Embedded Target for the
TI TMS320C6000™ DSP Platform

For Use with Real-Time Workshop®

Modeling
Simulation

Implementation

User’s Guide --.‘\The MathWorks

Version 3

X LB

How to Contact The MathWorks:

www . mathworks.com Web
comp.soft-sys.matlab Newsgroup
www .mathworks.com/contact_TS.html Technical support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information
508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail

3 Apple Hill Drive

Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Embedded Target for TI TMS320C6000 DSP Platform User’s Guide
© COPYRIGHT 2002-2006 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are
registered trademarks of The MathWorks, Inc. Other product or brand names are trademarks
or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

Revision History

July 2002
January 2003
September 2003
June 2004
August 2004
October 2004
October 2004
December 2004
March 2005

September 2005
March 2006
September 2006

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Online only
Online only
Online only

Revised for Version 1.0 (Release 13)
Revised for Version 1.1

Revised for Version 2.0 (Release 13SP1+)
Revised for Version 2.1 (Release 14)
Revised for Version 2.2

Revised for Version 2.2.1 (Release 14SP1)
Revised for Version 2.0 (Release 13SP2)
Revised for Version 2.3 (Release 14SP1+)
Revised for Version 2.3.1 (Release 14SP2)

Revised for Version 2.4 (Release 14SP3)
Revised for Version 3.0 (Release 2006a)
Revised for Version 3.1 (Release 2006b)

What Is Embedded Target for TI C6000 DSP?

1]

Introducing Embedded Target for the

TI TMS320C6000 DSP Platform 1-2
Suitable Applications 1-3
About Embedded Target for C6000DSP 14
Using ThisGuide 1-5
Expected Background 1-5
Configuration Information 1-7
Getting Started 1-9
Platform Requirements—Hardware and Operating System .. 1-9

Targeting C6000 DSP Hardware

2

OVerview e 2-3
About the Tutorials 2-3
TI C6000 and Code Composer StudioIDE 2-4
Supported Boards and Simulators 2-4
Typical Hardware Setup for C6711 DSK in Models 2-6
Typical Hardware Setup for RTDX in Models 2-8
Targeting Tutorial — Single Rate Application 2-10
Specifying Configuration Parameters for Your Model 2-17
Using the C6000lib Blockset 2-21
Configuring ADC Blocks 2-32

Configuring DACBlocks 2-36

Contents

Configuring LED Blocks 2-38

Using the Overrun Indicator Feature 2-38
Configuring Reset Blocks 2-40
Configuring Target Preferences Blocks 2-40
Board InfoPane 2-45
Memory Pane i 2-47
SectionsPane 2-52
DSP/BIOSPanecoiuiiniiiiiiiiinann.. 2-58
Configuring DM642 EVM Video ADC and Video DAC Blocks 2-61
Creating DSP Application Models for Targeting 2-68
Using Logging in Your DSP Applications 2-68
Generating Code from Real-Time Models 2-69
Schedulersand Timing 2-71
Timer-Based Versus Asynchronous Interrupt Processing 2-71
Synchronous Scheduling 2-72
Asynchronous Scheduling 2-73
Asynchronous Scheduler Examples 2-74
Uses for Asynchronous Scheduling 2-76
Scheduling Considerations 2-81

Setting Real-Time Workshop Options for

C6000 Hardwarettt 2-82

Setting Real-Time Workshop Pane Options 2-85
Target Selection 2-86
Documentation 2-87
Build Process 2-87
Custom Storage Classciiiiiiinnennn... 2-88
Debug Pane Options i, 2-89
Optimization Pane Options 2-90
TI C6000 Code Generation Pane Options 2-92
Overrun Indicator and Software-Based Timer 2-98
TI C6000 Compiler/Linker Options 2-98
Linker Options, 2-105
Embedded Target for TT C6000 DSP
Default Project Configuration — custom MW 2-106

Model Reference and Embedded Target for
TIC6000 DSP i 2-107

ii Contents

How Model Reference Works 2-107
Using Model Reference with Embedded Target for

TIC6000DSP e 2-108
Configuring Targets to Use Model Reference 2-110
Targeting Supported Boards 2-111
Typical Targeting Process 2-111
Targeting the C6711 DSP Starter Kit 2-112
Configuring Your C6711DSK 2-114
Confirming Your C6711 DSK Installation 2-115
Testing Your C6711 DSK, 2-115
Creating Your Simulink Model for Targeting 2-119

Targeting Tutorial II — A More Complex Application .. 2-123

Targeting Your C6711 DSK and Other Hardware 2-136
Configuring Your C6711DSK 2-136
Confirming Your C6711 DSK Installation 2-136
Testing Your C6711 DSK 2-137
Running Models on Your C6711DSK 2-141

Creating Code Composer Studio Projects

Without Building 2-144
Targeting Custom Hardware 2-146
Typical Targeting Process 2-148
Targeting a Custom Target 2-150
Sections Pane i 2-158
To Create Memory Maps for Targets 2-164

Using Embedded Target for TI C6000 DSP with
Real-Time Workshop Embedded Coder 2-165

Targeting with DSP/BIOS Options

3|

Introducing DSP/BIOS 3-2

iii

DSP/BIOS and Targeting Your TI C6000DSP 3-3

DSP/BIOS Configuration File 3-3
Memory Mappingccoiiiiie e 3-4
Hardware Interrupt Vector Table 3-4
Linker Command File 3-5
Code Generation with DSP/BIOS 3-6
Generated Code Without and With DSP/BIOS 3-6
Profiling Generated Code 3-10
Profiling Subsystems 3-10
Details About Timing and Profiling 3-11
Profiling Multitasking Systems 3-13
The Profiling Report 3-14
Interrupts and Profiling 3-15
Reading Your Profile Report 3-16
Definitions of Report Entries 3-17
Profiling Your Generated Code 3-19
To Enable Profiling for Your Generated Code 3-20
To Create Atomic Subsystems for Profiling 3-21
Using DSP/BIOS with Your Target Application 3-25
To Enable DSP/BIOS When You Generate Code 3-25

Using the C62x and C64x DSP Libraries

4|

About the C62x and C64x DSP Libraries................. 4-2
Characteristics Common to C62x and C64x Library Blocks ... 4-3

Fixed-Point Numbers 4-4
Signed Fixed-Point Numbers 4-4
Q Format Notation 4-5
BuildingModels 4-8
Converting Data Types 4-8
Using Sourcesand Sinks 4-9

iv Contents

Choosing Blocks to Optimize Code 4-9

5]

Blocks — By Category

Target Preferences (c6000tgtprefs) 5-2
RTDX Instrumentation (rtdxblocks) 5-3
C62x DSP (tic62dsplib) 5-4
CONVETSIONS &« . vttt ettt et e e et e e e e e e 5-4
Filters 5-4
Math and Matrices i e 5-5
Transforms 5-5
C64x DSP (tic64dsplib) 5-7
CONVETSIONS .« . vttt ettt et e e e e e e 5-7
Filters 5-7
Math and Matrices e e 5-8

Transforms 5-8

C6416 DSK (c6416dsklib) 5-10

C6711 DSK (c6711dsKklib) 5-11
C6713 DSK (c6713dsKklib) 5-12
DM642 EVM (dm642evmlib) 5-13
C6000 DSP Core Support (c6000dspcorelib) 5-14
TMDX3206040A DSP Support (tmdx326040lib) 5-15
Host Communication (hostcommlib) 5-16
C6000 DSP Communication (targetcommlib) 5-17
DSP/BIOS (dspbioslib) 5-18
Blocks — Alphabetical List 5-19

Supported Hardware and Issues

Al

Supported Hardware for Targeting A-2

Requirements for the DM642 EVM A-6
About DM642 EVM Board Revisions A-6
Setting Up Code Composer Studio for the DM642 EVM A7
About the XDS560 PCI-Bus JTAG Scan-Based Emulator A-8
Configuring the Target Preferences Block for
Your DM642 EVM e A-8
Configuring the DM642 EVM Video ADC Block A9

Continuing Issues with Embedded Target for
TIC6000 DSP e A-11
Setting the Clock Speed on the C6713DSK A-11

vi Contents

On the DM642 EVM, ADC-DAC Loopback Does Not

Display An RGB Image Correctly After Power-Up A-12

Simulink Stop Block Works Differently When Not

Using DSP/BIOS Features A-12
Index

vii

viil Contents

What Is Embedded Target
for TI C6000 DSP?

Introducing Embedded Target for the Introduces the Embedded Target for TI C6000 DSP and

TI TMS320C6000 DSP Platform some of the features it provides. Also links to the

(p. 1-2) supported hardware section in the Appendix.

About Embedded Target for C6000 Presents an overview of the capabilities of the Embedded

DSP (p. 1-4) Target for TI C6000 DSP

Using This Guide (p. 1-5) Introduces the organization of the User’s Guide and
provides summaries of each section

Configuration Information (p. 1-7) Describes how to determine if you have installed
Embedded Target for TI C6000 DSP

Getting Started (p. 1-9) Talks about the software and hardware required to use

the Embedded Target for TI C6000 DSP, from both The
MathWorks and from Texas Instruments

T What Is Embedded Target for TI C6000 DSP2

Introducing Embedded Target for the TI TM$320C6000 DSP

Platform

Embedded Target for the TI TMS320C6000 DSP Platform integrates
Simulink® and MATLAB® with Texas Instruments eXpressDSP™ tools. The
software collection lets you develop and validate digital signal processing
designs from concept through code. The Embedded Target for TI C6000 DSP
consists of the TI C6000 target that automates rapid prototyping on your
C6000 hardware targets. The target uses C code generated by Real-Time
Workshop® and your TT development tools to build an executable file for your
targeted processor. The Real-Time Workshop build process loads the targeted
machine code to your board and runs the executable file on the digital signal
processor.

Refer to “Supported Hardware for Targeting” on page A-2 for a list of the
targets that Embedded Target for TI C6000 DSP supports. You can generate
executable code for any of the supported targets.

All the features provided by Code Composer Studio (CCS), such as tools for
editing, building, debugging, code profiling, and project management, work to
help you develop applications using MATLAB, Simulink, Real-Time Workshop,
and your supported hardware. When you use this target, the build process
creates a new project in Code Composer Studio and populates the project with
the files the project requires.

As long as your TI hardware, whether built by TI or custom, supports
communications over JTAG and RTDX, you can use the Embedded Target for
TI C6000 DSP with your hardware, enabling you to maximize the results of
your development time and effort.

This chapter provides sections that describe the following:

® Some of the digital signal processing applications you can develop with
Embedded Target for TI C6000 DSP, in the section “Suitable Applications”
on page 1-3

® Prerequisites for using Embedded Target for TI C6000 DSP, in the section
“Platform Requirements—Hardware and Operating System” on page 1-9

Introducing Embedded Target for the TI TMS320C6000 DSP Platform

Suitable Applications

The Embedded Target for TI C6000 DSP enables you to develop digital signal
processing applications that have any of the following characteristics:

¢ Single rate

® Multirate

e Multistage

* Adaptive

® Frame based

¢ Fixed point when you use the C62x or C64x blocks with C64xx and C67xx
targets.

Your supported boards, and the Embedded Target for TI C6000 DSP, cover a
range of standard input sampling frequencies from 5.5 KHz to 48 KHz or more.
The specific supported input range depends on the board you own.

For any model to work in the targetting environment, you must select the

discrete-time solver in the Simulink Solver options. Targeting does not work
with continuous time solvers.

T What Is Embedded Target for TI C6000 DSP2

About Embedded Target for C6000 DSP

Embedded Target for TI C6000 DSP lets you use Simulink to model digital
signal processing algorithms from blocks in the Signal Processing Blockset,
and then use Real-Time Workshop to generate (or build) ANSI C code targeted
to the Texas Instruments DSP development boards or Texas Instruments Code
Composer Studio™ Integrated Development Environment (CCS IDE). The
Embedded Target for TI C6000 DSP takes the generated C code and uses Texas
Instruments (TI) tools to build specific machine code depending on the T board
you use. The build process downloads the targeted machine code to the selected
hardware and runs the executable on the digital signal processor. After
downloading the code to the board, your digital signal processing (DSP)
application runs automatically on your target.

Using This Guide

Using This Guide

This section provides some guidance for using this book to learn more about the
Embedded Target for TI C6000 DSP.

Expected Background

This document introduces you to using Embedded Target for C6000 DSPs with
Real-Time Workshop to develop digital signal processing applications for the
Texas Instruments CC6000 family of DSP development hardware, such as the
TI TMS320C6711 DPS Starter Kit. To get the most out of this manual, you
should be familiar with MATLAB and its associated programs, such as Signal
Processing Blockset and Simulink. We do not discuss details of digital signal
processor operations and applications, except to introduce concepts related to
using the C6711 DSK or other targets. For more information about digital
signal processing, you may find one or more of the following books helpful:

e McClellan, J. H., R. W. Schafer, and M. A. Yoder, DSP First: A Multimedia
Approach, Prentice Hall, 1998.

¢ Lapsley, P., J. Bier, A. Sholam, and E. A. Lee, DSP Processor Fundamentals
Architectures and Features, IEEE Press, 1997.

¢ Oppenheim, A.V., R. W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989.

e Mitra, S. K., Digital Signal Processing—A Computer-Based Approach, The
McGraw-Hill Companies, Inc, 1998.

o Steiglitz, K, A Digital Signal Processing Primer, Addison-Wesley Publishing
Company, 1996.

For information about Code Composer Studio and Real-Time Data Exchange™
(RTDX™), refer to your Texas Instruments documentation for each product.
Refer to the documentation for your TI boards for information about setting
them up and using them.

If You Are a New User

New users should read Chapter 1, “What Is Embedded Target for TI C6000
DSP?” This introduces the Embedded Target for TI C6000 DSP environment —
the required software and hardware, installation requirements, and the board
configuration settings that you need. You will find descriptions of the blocks
associated with the targeting software, and an introduction to the range of

T What Is Embedded Target for TI C6000 DSP2

digital signal processing applications that Embedded Target for C6000 DSPs
supports.

If You Are an Experienced User

All users should read Chapter 2, “Targeting C6000 DSP Hardware” for
information and examples about using the new blocks and build software to
target your C6711 DSK. Two example models introduce the targeting software
and build files, and give you an idea of the range of applications supported by
Embedded Target for C6000 DSPs. For C6711 DSK users, refer to “Configuring
Your C6711 DSK” on page 2-136 for more information about installing and
using your C6711 DSK.

Configuration Information

Configuration Information

To determine whether the Embedded Target for TI C6000 DSP is installed on
your system, type this command at the MATLAB prompt.

c60001ib

When you enter this command, MATLAB displays the C6000 block library
containing the following libraries that comprise the C6000 library:

® C6000 DSP Core Support

® C62x DSP Library

e C64x DSP Library

® C6416 DSK Board Support

¢ C6711 DSK Board Support

® C6713 DSK Board Support

¢ DM642 EVM Board Support

e DSP/BIOS Library

® Host Communication Library

® RTDX Instrumentation

® Target Preferences

e TMDX326040 Daughtercard Support

If you do not see the listed libraries, or MATLAB does not recognize the
command, install the Embedded Target for TI C6000 DSP. Without the

software, you cannot use Simulink and Real-Time Workshop to develop
applications targeted to the TI boards.

Note For up-to-date information about system requirements, refer to the
system requirements page, available in the products area at the MathWorks
Web site (http://www.mathworks.com).

To verify that CCS is installed on your machine, enter

ccsboardinfo

T What Is Embedded Target for TI C6000 DSP2

at the MATLAB command line. With CCS installed and configured, MATLAB
returns information about the boards that CCS recognizes on your machine, in
a form similar to the following listing.

Board Board Proc Processor
Processor
Num Name Num Name
Type
0 C6x11 DSK (Texas Instruments) 0 CPU
TMS320C6x1x

If MATLAB does not return information about any boards, revisit your CCS
installation and setup in your CCS documentation.

As a final test, launch CCS to ensure that it starts up successfully. For the
Embedded Target for TI C6000 DSP to operate with CCS, the CCS IDE must

be able to run on its own.

Cetting Started

Getting Started

This section describes the hardware and software you need to run the
Embedded Target for TI C6000 DSP on your Microsoft Windows PC.

Embedded Target for TI C6000 DSP runs on Windows 2000, and Windows XP
platforms.

Platform Requirements—Hardware and Operating
System

To run the Embedded Target for TI C6000 DSP, your host PC must meet the
following hardware configuration:

¢ Intel Pentium or Intel Pentium processor compatible PC

* 64 MB RAM (128 MB recommended)

® 20 MB hard disk space available after installing MATLAB

¢ Color monitor

¢ CD-ROM drive

® Windows 2000 or Windows XP.

You may need additional hardware, such as signal sources and generators,
microphones, oscilloscopes or signal display systems, and assorted audio cables

to test and evaluate your digital signal processing application on your
hardware.

Refer to your documentation from The MathWorks for more information on
installing the software required to support Embedded Target for TI C6000
DSP, as shown in the next table. In all cases, Embedded Target for TI C6000

T What Is Embedded Target for TI C6000 DSP2

DSP requires that you install one of the two most recent versions of the

required software.

Prerequisites for Using Embedded Target for Tl C6000 DSP Software for

Targeting

Installed Product

Additional Information

MATLAB

Link for Code
Composer Studio™
Development Tools

Real-Time Workshop
Simulink

Signal Processing
Toolbox

Signal Processing
Blockset

Core software from The MathWorks

Software to enable communications between
MATLAB and the Code Composer Studio
development environment. Required for the
Embedded Target for TI C6000 DSP to work in
code generation and targeting.

Software used to generate C code from Simulink
models

Software package for modeling, simulating, and
analyzing dynamic systems

Software package for analyzing signals,
processing signals, and developing algorithms

Block libraries used by Simulink

For information about the software required to use the Link for Code Composer
Studio Development Tools, refer to the Products area of the MathWorks Web
site—http://www.mathworks.com.

Texas Instruments Software

In addition to the required software from The MathWorks, Embedded Target
for TT C6000 DSP requires that you install the Texas Instruments development

1-10

Cetting Started

tools and software listed in the following table. Installing Code Composer
Studio IDE for the C6000 series installs the software shown.

Required Tl Software for Targeting Your Tl C6000 Hardware

Installed Product

Additional Information

Assembler

Compiler

Linker

Code Composer Studio

TI C6000 miscellaneous
utilities

Code Composer Setup
Utility

Creates object code (.obj) for C6000 boards
from assembly code.

Compiles C code from the blocks in
Simulink models into object code (.obj). As
a byproduct of the compilation process, you
get assembly code (.asm) as well.

Combines various input files, such as object
files and libraries.

Texas Instruments integrated development
environment (IDE) that provides code
debugging and development tools.

Various tools for developing applications for
the C6000 digital signal processor family.

Program you use to configure your CCS
installation by selecting your target boards
or simulator.

In addition to the TI software, you need one or more of the following in any

combination:

® One or more Texas Instruments TMS320C6416 DSP Starter Kits
® One or more TMS320C6711 DSP Starter Kits
® One or more TMS320C6713 DSP Starter Kits

® One or more TMDX326040A Daughter Cards for the C6711 DSK, used with
the DSK. This daughter card is also known as the PCM3003 Audio Daughter

Card

® One or more DM642 Evaluation Modules

¢ One or more boards from the supported hardware lists

1-11

T What Is Embedded Target for TI C6000 DSP2

1-12

® One or more configured simulators for any supported digital signal
processors

For up-to-date information about the software from The MathWorks you need
to use the Embedded Target for TI C6000 DSP, refer to the MathWorks Web
site—http://www.mathworks.com. Check the Product area for the Embedded

Target for the TI TMS320C6000 DSP Platform.

Targeting C6000 DSP
Hardware

Overview (p. 2-3) Introduces Embedded Target for TI C6000 DSP and the
tutorials in this chapter.

TI C6000 and Code Composer Studio Discusses the blocks provided by the Embedded Target
IDE (p. 2-4) for TI C6000 DSP for developing models for TT C6000™
DSP platforms. Also lists the supported hardware.

Targeting Tutorial — Single Rate Takes you through the process of creating models in
Application (p. 2-10) Simulink and generating code for your targets. Uses the
6701 EVM as the example board.

Using the C6000lib Blockset (p. 2-21) Describes the contents of the C6000lib blockset—what
blocks are included and where, and briefly describes how
to configure the blocks.

Schedulers and Timing (p. 2-71) Describes the timer-based and asynchronous schedulers

Setting Real-Time Workshop Options Provides the details on setting the Real-Time Workshop
for C6000 Hardware (p. 2-82) options when you generate code from your Simulink
models to TI hardware.

Targeting Supported Boards (p. 2-111) If you are targeting a C6711 DSK, this section details
specific information about using the target.

Model Reference and Embedded Target Introduces model reference and how you use model

for TI C6000 DSP (p. 2-107) reference with Embedded Target for TI C6000 DSP
Targeting Tutorial II — A More Using a more complex model than the previous tutorial,
Complex Application (p. 2-123) this exercise walks you through code generation for a

multistage model.

Targeting Your C6711 DSK and Other If you are targeting a C6711 DSK, this section details
Hardware (p. 2-136) specific information about using the target, although the
process shown applies to other targets equally.

2 Targeting C6000 DSP Hardware

Creating Code Composer Studio
Projects Without Building (p. 2-144)

Targeting Custom Hardware (p. 2-146)

Using Embedded Target for TI C6000
DSP with Real-Time Workshop
Embedded Coder (p. 2-165)

You have the option of generating code into a Code
Composer Studio project, rather than to hardware. This
section introduces the Generate CCS _project selection
in the Real-Time Workshop build options.

Discusses how you target processors on boards that are
not supported boards. We call these boards custom
targets.

Provides details about using Embedded Target for T1
C6000 DSP with your Real-Time Workshop Embedded
Coder software and embedded real-time target.

Overview

Overview

The Embedded Target for the TI TMS320C6000 DSP Platform lets you use
Real-Time Workshop to generate a C language real-time implementation of
your Simulink model. You can compile, link, download, and execute the
generated code on the C6711 DSP Starter Kit (DSK). In combination with the
supported boards (refer to “Supported Hardware for Targeting” on page A-2),
your Embedded Target for TI C6000 DSP software is the ideal resource for
rapid prototyping and developing embedded systems applications for C6711
digital signal processors. The Embedded Target for TI C6000 DSP software
focuses on developing real-time digital signal processing (DSP) applications for
C6000 hardware. Additional hardware that we support is listed in “Supported
Hardware and Issues” on page A-1.

Although the tutorials in this chapter focus on the C6711 DSK, the techniques
and processes apply to any supported hardware, with minor adjustments for
the processor involved.

This chapter describes how to use the Embedded Target for TI C6000 DSP to
create and execute applications on Texas Instruments C6000 development
boards. To use the targeting software, you should be familiar with using
Simulink to create models and with the basic concepts of Real-time Workshop
automatic code generation. To read more about Real-Time Workshop, refer to
your Real-Time Workshop documentation.

About the Tutorials

In most cases, this chapter deals with the C6711 DSK targets. Fortunately, all
members of the C6000 family of processors that we support work in a manner
similar to the C6711 DSK. While you review the contents of this chapter, and
follow the tutorials, recall that the concepts and techniques or development
processes apply, with a few adjustments, to all supported C6000 processors and
boards.

Later sections discuss the Real-Time Workshop embedded coder and targeting
custom hardware.

2 Targeting C6000 DSP Hardware

Tl C6000 and Code Composer Studio IDE

Texas Instruments (TI) markets a complete set of software tools to use when
you develop applications for your C6000 hardware boards. This section
provides a brief example of how the Embedded Target for TI C6000 DSP uses
Code Composer Studio™ (CCS) Integrated Development Environment (IDE)
with the Real-Time Workshop and the C6000lib blockset.

Executing code generated from Real-Time Workshop on a particular target in
real time requires that Real-Time Workshop generate target code that is
tailored to the specific hardware target. Target-specific code includes I/0 device
drivers and an interrupt service routine (ISR). Since these device drivers and
ISRs are specific to particular hardware targets, you must ensure that the
target-specific components are compatible with the target hardware.

To allow you to build an executable, TI C6000 uses the MATLAB links in Link
for Code Composer Studio Development Tools to invoke the code building
process within CCS. After you download your executable to your target and run
it, the code runs wholly on the target; you can access the running process only
from the CCS debugging tools or across a link for CCS or Real-Time Data
Exchange (RTDX). Otherwise the running process is not accessible.

Used in combination with your Embedded Target for TI C6000 DSP and
Real-Time Workshop, TI products provide an integrated development
environment that, once installed, needs no additional coding.

Supported Boards and Simulators

Using the C6000 target provided by the Embedded Target for TI C6000 DSP,
you can generate code to run on a range of boards, both evaluation modules and
DSP starter kits.

Refer to “Supported Hardware and Issues” for the latest information about the
hardware supported by the Embedded Target for TI C6000 DSP.

About Simulators

CCS offers many simulators for the C6701 and C6711 digital signal processors,
and other C6000 processors in the CCS Setup utility. Much of your model and
algorithm development efforts work with the simulators, such as code
generation. And, since the Embedded Target for TI C6000 DSP provides a
software-based scheduler, your models and generated code run on the

TI C6000 and Code Composer Studio IDE

simulators just as they do on your hardware. You can use the RTDX links with
the simulators as well. For more information about the simulators in CCS,
refer to your CCS online help system.

When you set up a simulator, match the processor on your target exactly to
simulate your target hardware. To target C6711DSK boards, your simulator
must contain a C6711 processor, not just a C6xxx simulator. Simulators must
match the target processor because the codecs on the board are not the same
and the simulator needs to identify the correct codec. Correctly matching your
simulator to your hardware ensures that the memory maps and registers
match those of your intended target signal processor.

In general, use the device cycle accurate simulators provided by CCS Setup to
simulate your processor.

Using a Simulator

You can use the simulator alone to develop projects with Embedded Target for
TI C6000 DSP. The simulator can generate and handle timer interrupts
properly to enable your generated code to run.

To use the simulator, you configure the target preferences block in your model
to use the simulator target.

1 Click the target preferences block in your model and select Edit > Open
Block from the menu bar for your model. This step opens the C6000 Target
Preferences dialog box for your target.

2 On the Board info pane in the C6000 Target Preferences dialog box, select
Simulator.

3 Click Apply to apply the change, or click OK to apply the new setting and
close the dialog box.

There is one manual step to do to use the simulator. After you generate code
from a model to a CCS project, you must modify the project by setting the
RTDX Mode in CCS to Simulator.

In addition, you must substitute the file rtdxsim.1lib instead of the default
rtdx.1lib library file in the project. Accomplish this project file modification by
navigating to the Include Libraries option in CCS:

Build Options > Linker > Basic

2-5

2 Targeting C6000 DSP Hardware

2-6

and replacing the file as needed in the Include Libraries option.

After you make this file substitution, you cannot use the Line In and Line Out
ADC block options or any other target-specific board-level blocks. You can
substitute any discrete-time sources and sinks from Simulink, Signal
Processing Blockset, or other blockset. When there are no codec blocks (ADC or
DAC blocks) in your model, the Embedded Target for TT C6000 DSP configures
an on-chip timer to trigger the system at the appropriate sample time. As

a result, whatever happens in the model is completely up to you, the user, as
long as you provide the discrete sample time.

Using RTDX with a Simulator

If you are using DSP/BIOS in your project, you configure RTDX by opening the
DSP/BIOS Config properties in the project tree in CCS, opening the project
.cdb file, and navigating to Input/Output. In the Input/Output properties you
set the RTDX mode to Simulator.

If your project is not using DSP/BIOS, you only have to change the RTDX mode
when you are using RTDX blocks in your model. Otherwise, RTDX is not
needed.

Typical Hardware Setup for C6711 DSK in Models

The next figure presents a block diagram of the typical setup for the inputs and
output for the C6711 DSK.

Microphone To Mic In Oscilloscope

From Line Out

To Line In

Generator C6711 DSK Speaker Speaker

TI C6000 and Code Composer Studio IDE

After you have installed one or more of the supported development boards
shown in “Supported Hardware and Issues” on page A-1, start MATLAB. At
the MATLAB command prompt, type c60001ib. This opens a Simulink
blockset named C6000lib that includes libraries that contain blocks predefined
for C6000 input and output devices:

Library Description

“C6000 DSP Communication Blocks that provide UDP and TCP/IP
(targetcommlib)” on page 5-17 communications capability on the target.
Includes byte manipulation blocks.

“C6000 DSP Core Support Blocks for managing memory and task

(c6000dspcorelib)” on scheduling on C6000-based targets.

page 5-14

“C62x DSP (tic62dsplib)” on Blocks that provide C62x-optimized

page 5-4 algorithms such as filtering and matrix
manipulation.

“C64x DSP (tic64dsplib)” on Blocks that provide C64x-optimized

page 5-7 algorithms such as filtering and matrix
manipulation.

“C6416 DSK (c6416dsklib)” on Blocks to configure the peripherals on

page 5-10 the C6416 DSK.

“C6711 DSK (c6711dsklib)” on Blocks to configure the peripherals on

page 5-11 the C6711 DSK.

“C6713 DSK (c6713dsklib)” on Blocks to configure the peripherals on

page 5-12 the C6713 DSK.

“DM642 EVM (dm642evmlib)” Blocks to configure the peripherals on

on page 5-13 the DM642 EVM and configure video
capture.

“DSP/BIOS (dspbioslib)” on Blocks that provide scheduling

page 5-18 management using DSP/BIOS.

2 Targeting C6000 DSP Hardware

Library Description
“Host Communication Blocks that configure the target for UDP
(hostcommlib)” on page 5-16 communications. Includes byte

manipulation blocks.

“RTDX Instrumentation Blocks that provide RTDX
(rtdxblocks)” on page 5-3 instrumentation for communicating
between your target and host.

“Target Preferences Blocks that configure models for specific
(c6000tgtprefs)” on page 5-2 targets or custom C6000 hardware.

“TMDX3206040A DSP Support Blocks that configure the input and
(tmdx3260401ib)” on page 5-15 output for the daughtercard

Each board-based block library, such as C6713 DSK contains a version of each
of these blocks:

¢ ADC block

¢ DAC block

¢ DIP Switch block (optional, refer to the reference page for the DIP Switch
block for your target)

e LED block

® Reset block

Blocks from these libraries are associated with your boards and hardware. As
needed, add the devices to your model. If you choose not to include either an
ADC or DAC block in your model (they are available in the target specific
libraries), Embedded Target for TI C6000 DSP provides a timer that produces
the interrupts required for timing and running your model, either on your
hardware target or on a simulator.

Typical Hardware Setup for RTDX in Models

In addition to the blocks for specific boards, the C6000lib blockset includes the
library RTDX Instrumentation that contains RTDX input and output blocks
that apply to all C6000 development boards and the C6000 DSP Core support
library that contain blocks that let you transfer data to and from memory on

TI C6000 and Code Composer Studio IDE

any C6000-based target. Like the RTDX blocks, the core support blocks are not
hardware dependent.

With your model open, select Configuration Parameters from the Simulink
option to open the Configuration Parameters dialog box. In the Select tree,
click Real-Time Workshop. You must specify the appropriate versions of the
system target file and template makefile. For the C6711 DSK, in the
Real-Time Workshop pane of the dialog box, specify

ti_c6000.tlc

to select the correct target file in Real-Time Workshop system target file.
Or click Browse and select ti_c6000.t1c from the list of targets, or whichever
target best matches your hardware.

With this configuration, you can generate a real-time executable and download
it to the TI development boards. You do this by clicking Build on the
Real-Time Workshop pane. Real-Time Workshop automatically generates

C code and inserts the I/O device drivers as specified by the ADC and DAC
blocks in your block diagram, if any.

These device drivers are inserted in the generated C code as inlined
S-functions. Inlined S-functions offer speed advantages and simplify the
generated code. For more information about inlining S-functions, refer to your
target language compiler documentation. For a complete discussion of
S-functions, refer to your documentation about writing S-functions.

During the same build operation, the template makefile and block parameter
dialog box entries get combined to form the target makefile for your TI C6000
board. Your makefile invokes the TI cross-compiler to build an executable file.

If you selected the Build and execute build action, the executable file is
automatically downloaded over the parallel port to your C6711 DSK. After
downloading the executable file to the target, the build process runs the file on
the board’s DSP.

2-9

2 Targeting C6000 DSP Hardware

2-10

Targeting Tutorial — Single Rate Application

In this tutorial you create and build a model that simulates audio
reverberation applied to an input signal. Reverberation is similar to the echo
effect you can hear when you shout across an open valley or canyon, or in a
large empty room.

You can choose to create the Simulink model for this tutorial from blocks in
Signal Processing Blockset and Simulink block libraries, or you can find the
model in the Embedded Target for TI C6000 DSP demos. For this example, we
show the model as it appears in the demonstration program. The
demonstration model name is c6701evmafxr.mdl as shown in the next figure.
Open this model by entering c6701evmafxr at the MATLAB prompt.

To run this model you need a microphone connected to the Mic In connector on
your C6711 DSK, and speakers and an oscilloscope connected to the Line Out
connector on your C6711 DSK. To test the model, speak into the microphone
and listen to the output from the speakers. You can observe the output on the
oscilloscope as well.

To download and run your model on your C6711 DSK, complete the following
tasks:

1 Use Simulink blocks, Signal Processing Blockset blocks, and blocks from
other blocksets to create your model application.

2 Add the Embedded Target for TI C6000 DSP blocks that let your signal
sources and output devices communicate with your C6711 DSK—the C6711
DSK ADC and C6711 DSK DAC blocks that you find in the Embedded
Target for TI C6000 DSP ¢6000lib blockset.

3 Add the C6711DSK target preferences block from the Target Preferences
library to your model. Verify and set the block parameters for your
hardware. In most cases, the default settings work fine.

If you are using a C6711 simulator target, select Simulator on the Board
info pane of the target preferences block.
4 Set the configuration parameters for your model, including

= Solver parameters such as simulation start and stop time and solver
options

Targeting Tutorial — Single Rate Application

= Real-Time Workshop options such as target configuration and target
compiler selection

5 Build your model to the selected target.

6 Test your model running on the target by changing the input to the target
and observing the output from the target.

Your target for this tutorial is your C6711 DSK installed on your PC. Be sure
to configure and test your board as directed in “Configuring Your C6711 DSK”
on page 2-114 in this guide before continuing this tutorial.

Building the Audio Reverberation Model

To build the model for audio reverberation, follow these steps:

1 Start Simulink.

2 Create a new model by selecting File > New > Model from the Simulink
menu bar.

3 Use Simulink blocks and Signal Processing Blockset blocks to create the
following model.

Feedback Gain

-2400
z

Integer Delay

Delay Mix

Look for the Integer Delay block in the Signal Operations library of the
Signal Processing Blockset. You do not need to add the input and output
signal lines at this time. When you add the C6711 DSK blocks in the next
section, you add the input and output to the sum blocks.

4 Save your model with a suitable name before continuing.

2-11

2 Targeting C6000 DSP Hardware

2-12

Adding C6711 DSK Blocks to Your Model

So that you can send signals to your C6711 DSK and get signals back from the
board, the Embedded Target for TI C6000 DSP includes a block library
containing five blocks designed to work with the codec on your C6711 DSK:

® Input block (C6711 DSK ADC)

e Output block (C6711 DSK DAC)

¢ Light emitting diode block (C6711 DSK LED)

® Software reset block (Reset C6711 DSK)

® DIP switch block (C6711 DSK DIP Switch)

Entering c6711dsklib at the MATLAB prompt opens this window showing the

library blocks. This block library is included in the Embedded Target for TI
C6000 DSP ¢60001ib blockset in the Simulink Library browser.

[lLibrary: c6711dsklib -0 x|

File Edit Miew Formab Help

C6711DSK
Board Support Library
Line In Line Cut
CaAT11 DSk P CAET11 DSK
ADC LAac
ADC LAac
CAET11 DSK Reszat
LED CET11 DSk
LED Reszel
CEF1TDSK |
CIP Switch
Swilch

The C6711 DSK ADC and C6711 DSK DAC blocks generate code that
configures the codec on your C6711 DSK to accept input signals from the input
connectors on the board, and send the model output to the output connector on

Targeting Tutorial — Single Rate Application

C6711DSK

Mic In
C6711 DSK

the board. Essentially, the C6711 DSK ADC and C6711 DSK DAC blocks add
driver software that controls the behavior of the codec for your model.

To add C6711 DSK target blocks to your model, follow these steps:

Double-click Embedded Target for TI C6000 DSP in the Simulink Library
browser to open the ¢6000lib blockset.

Click the library C6711 DSK Board Support to see the blocks available for
your C6701 EVM.

Drag and drop C6711 DSK ADC and C6711 DSK DAC blocks to your model
as shown in the figure.

Feedback Gain

ADC

ADC

-1800
z

Line Out
C6711 DSK
DAC

Delay Mix DAC

Integer Delay

Connect new signal lines as shown in the figure.

Finally, from the TI C6000 Target Preferences block library, add the
C6711DSK Target Preferences block to the model. Notice that it is not
connected to any other block in the model.

Configuring the Embedded Target for TI C6000 DSP Blocks

To configure the Embedded Target for TI C6000 DSP blocks in your model,
follow these steps:

Click the C6711 DSK ADC block to select it.

2-13

2 Targeting C6000 DSP Hardware

2-14

2 Select Block Parameters from the Simulink Edit menu.

3 Set the following parameters for the block:

= Clear the Stereo check box.

= Select the +20 dB mic gain boost check box.

= From the list, set Sample rate to 8000.

= Set Codec data format to 16-bit linear.

= For Output data type, select Double from the list.
= Set Scaling to Normalize.

= Set Source gain to 0.0.

= Enter 64 for Samples per frame.

Include a signal path directly from the input to the output so you can display
both the input signal and the modified output signal on the oscilloscope for
comparison.

For C6711 DSK ADC source, select Mic In.
Click OK to close the C6711 DSK ADC dialog box.

Now set the options for the C6711 DSK DAC block.

= Set Codec data format to 16-bit linear.
= Set Scaling to Normalize.

= For DAC attenuation, enter 0.0.

= Set Overflow mode to Saturate.

Click OK to close the dialog box.
Click the C6711DSK Target Preferences block.

Select Block Parameters from the Simulink Edit menu.

Targeting Tutorial — Single Rate Application

10 Verify the parameter settings for the C6711 DSK target. The figures below
show the proper values.

Board info Settings

} C6000 Target Preferences\C6711DS 5 |EI |£|

Memory | Sections | DsPiEIOS [

Board Properties

Board type: CE7 1105k

Device: IE?H j

CPU clock speed: I 180 MHz

™ Simulator I Enable High-Speed RTDX

Board Custom Code

&

Include paths
Libraries
Initialize functions
Terminate functions

[i

Link to Code Cornposer Studio
CCS board name:

IDM5443 Cycle Accurate Simulator j

CCE processor name:
[mvs320c6400 =

OK | Apply Cancel | Help |

2-15

2 Targeting C6000 DSP Hardware

Memory Settings

} C6000 Target Preferences - o] x|

Board Infa |
Physical memaory
M MNarme: IIRAM
SORAM
Address: Im
Length: Im
Cantents: IW
LI Add | Remove |
Heap
[~ Create heap Heap size: 255
I~ Defiie 1abel Heap label: I segmant narme
L2 cache
[V Enable L2 cache
L2 cache size: IfiB kh 'l

OK Apply | Cancel | Help

2-16

Targeting Tutorial — Single Rate Application

Section Settings

) C6000 Target Preferences . _ o] x]

Description: ¢ code

Placement: ISDRAM -l

:pinit LI

Description: Argument buffer
sysdata
.ohj

Placement: ISDRAM vl
.hios ﬂ

Data ohject placement: ISDRAM 'l
Code object placement: ISDRAM 'l

Custom sections

a | Mame: I
Placement: I|RAM vl

LI Add | Remuove |

OK | Apply | Cancel | Help |

You have completed the model. Now configure the Real-Time Workshop
options to build and download your new model to your C6711 DSK.

Speciflying Configuration Parameters for Your
Mode

The following sections describe how to build and run real-time digital signal
processing models on your C6711 DSK. Running a model on the target starts
with configuring and building your model from the Configuration Parameters
dialog box in Simulink.

2-17

2 Targeting C6000 DSP Hardware

2-18

Setting Simulink Configuration Parameters

After you have designed and implemented your digital signal processing model
in Simulink, complete the following steps to set the configuration parameters
for the model:

1 Open the Configuration Parameters dialog box and set the appropriate
options on the Solver category for your model and for the Embedded Target
for TI C6000 DSP.

= Set Start time to 0.0 and Stop time to inf (model runs without stopping).
Generated code does not honor this setting if you set a stop time. Set this
to inf for completeness.

= Under Solver options, select the fixed-step and discrete settings from
the lists

= Set the Fixed step size to Auto and the Tasking Mode to Single Tasking

Ignore the Data Import/Export,Diagnostics,and Optimization categoriesin
the Configuration Parameters dialog box. The default settings are correct for
your new model.

Setting Real-Time Workshop Target Build Options

To configure Real-Time Workshop to use the correct target files and to compile
and run your model executable file, you set the options in the Real-Time
Workshop category of the Configuration Parameters dialog box. Follow these
steps to set the Real-Time Workshop options to target your C6711 DSK:

1 Select Real-Time Workshop on the Select tree.

2 InTarget selection, click Browse to select the system target file for C6000
targets—ti ¢6000.tlc. It may already be the selected target.

Clicking Browse opens the System Target File Browser.

3 On the System Target File Browser, select the system target file
ti_c6000.tlc and click OK to close the browser.

Real-Time Workshop updates the Template makefile and Make command
options with the appropriate files based on your system target file selection.

4 From the Select tree, choose TI C6000 code generation to specify code
generation options that apply to the C6711 DSK target.

Targeting Tutorial — Single Rate Application

5 Under Code Generation, select the Inline run-time library functions
option. Clear the other options.

6 Under Target Selection, verify that Export CCS handle to MATLAB base
workspace is selected and provide a name for the handle (optional).

7 Select TI C6000 Compiler/Linker on the Select tree to set the compiler
options.

8 Set the following options in the dialog box under Compiler:
= Optimization level should be Function (-02).

= Set Compiler verbosity to Quiet.
Clear the other options under Compiler.
9 Set the linker operation options by selecting the Retain .obj files check box.
10 Change the category on the Select tree to Hardware Implementation.
11 Set Byte ordering to Little endian.
12 Change the category again to TI C6000 Code Generation.

13 Set the following Real-Time Workshop run-time options:
= Build action: Build_and_execute.
= Overrun action: Notify and_halt.
= Overrun notification method: Turn_on_LEDs.

You have configured the Real-Time Workshop options that let you target your
C6711 DSK. You may have noticed that you did not configure a few Real-Time
Workshop categories on the Select tree, such as Comments, Symbols, and
Optimization.

For your new model, the default values for the options in these categories are
correct. For other models you develop, you may want to set the options in these
categories to provide information during the build and to run TLC debugging
when you generate code.

2-19

2 Targeting C6000 DSP Hardware

2-20

Building and Executing Your Model on Your C6711 DSK

After you set the configuration parameters and configure Real-Time Workshop
to create the files you need, you direct Real-Time Workshop to build, download,
and run your model executable on your target:

Change the category to Real-Time Workshop on the Configuration
Parameters dialog box.

Clear Generate code only and click Build to generate and build an
executable file targeted to your C6701 EVM.

When you click Build with Build_and_execute selected for Build action,
the automatic build process creates an executable file that can be run by the
C6711 DSP on your C6711 DSK, and then downloads the executable file to
the target and runs the file.

To stop model execution, click the Reset C6711 DSK block or use the Halt
option in CCS. You could type halt from the MATLAB command prompt as
well.

Testing Your Audio Reverb Model

With your model running on your C6711 DSK, speak into the microphone you
connected to the board. The model should generate a reverberation effect out of
the speakers, delaying and echoing the words you speak into the mike. If you

built the model yourself, rather than using the supplied model c6711dskafxr,
try running the demonstration model to compare the results.

Using the C6000Iib Blockset

Using the C6000lib Blockset

The Embedded Target for TI C6000 DSP block library C6000lib comprises
block libraries that contain blocks designed for targeting specific boards or

using RTDX. The libraries are

Library

Description

“C6000 DSP Communication
(targetcommlib)” on page 5-17

“C6000 DSP Core Support
(c6000dspcorelib)” on
page 5-14

“C62x DSP (tic62dsplib)” on
page 5-4

“C64x DSP (tic64dsplib)” on
page 5-7

“C6416 DSK (c6416dsklib)” on
page 5-10

“C6711 DSK (c6711dsklib)” on
page 5-11

“C6713 DSK (c6713dsklib)” on
page 5-12

“DM642 EVM (dm642evmlib)”
on page 5-13

“DSP/BIOS (dspbioslib)” on
page 5-18

Blocks that provide UDP and TCP/IP
communications capability on the target.
Includes byte manipulation blocks.

Blocks for managing memory and task
scheduling on C6000-based targets.

Blocks that provide C62x-optimized
algorithms such as filtering and matrix
manipulation.

Blocks that provide C64x-optimized
algorithms such as filtering and matrix
manipulation.

Blocks to configure the peripherals on
the C6416 DSK.

Blocks to configure the peripherals on
the C6711 DSK.

Blocks to configure the peripherals on
the C6713 DSK.

Blocks to configure the peripherals on
the DM642 EVM and configure video
capture.

Blocks that provide scheduling
management using DSP/BIOS.

2-21

2 Targeting C6000 DSP Hardware

2-22

Library Description
“Host Communication Blocks that configure the target for UDP
(hostcommlib)” on page 5-16 communications. Includes byte

manipulation blocks.

“RTDX Instrumentation Blocks that provide RTDX
(rtdxblocks)” on page 5-3 instrumentation for communicating
between your target and host.

“Target Preferences Blocks that configure models for specific
(c6000tgtprefs)” on page 5-2 targets or custom C6000 hardware.

“TMDX3206040A DSP Support ~ Blocks that configure the input and
(tmdx3260401ib)” on page 5-15 output for the daughtercard

Each block library appears in one of the next figures. The sections after the
figures review the configuration options for blocks in the EVM and DSK block
libraries. For more information about the RTDX blocks, refer to “Constructing
Link Objects” in your Link for Code Composer Studio documentation.

Each board-based block library contains a version of each of these blocks:

e ADC block
* DAC block

® DIP Switch block (optional, refer to the reference page for the DIP Switch
block for your target)
e LED block

® Reset block

Similarities in the C6000 boards result in the ADC, DAC, DIP Switch, LED,
and Reset blocks for the C6000-based boards being almost identical. Each
section about a block, such as the ADC block, presents all possible options for
the block, noting when an option applies only to a board-specific version of the
ADC block.

Here is the main library of blocks for Embedded Target for TI C6000 DSP.

Using the C6000Iib Blockset

=] Library: c6000iib : =1olx|

Fle Edit Wew Format Help

General Board Support Optimized Libraries
CB000 DSP Hos CB4x DSP
Communication DME42 EVM CG416 DSK }
Core Support f Library
Library
CEO00 DSP
b Communication C6713 DSK C6741 DSK STk
Instrumentation . Library
Library
TMDX326040
s e Daughtercard
i for CE711 DSK

Block Libraries for
Embedded Target for Texas Instruments(tm)
TMS320C6000 DSP Platform
Copyright 2002-2006 The MathWorks, Inc.

The next figure shows the C6711 DSK block library.

2-23

2 Targeting C6000 DSP Hardware

[=ILibrary: c6711dsklib -|0] x|

File Edit Wiew Formab Help

C6711DSK
Board Support Library
Line In Line Cut
CET11 DSK B CAET11 DSK
ADC DAC
ADC DAC
CET11 DSK
LED
LED Resat
CETI1DSK |
DIP Switch
Switch

The RTDX Library contains the blocks shown in the next figure.

[ZILibrary: rtdxBlocks i [m]

File Edit Wiew Formab Help

From RTDX To RTDX
ichan1 ochand
From RTDX To RTDX

The core support blocks, stored in the DSP Core Support library, appear in the
next figure.

2-24

Using the C6000Iib Blockset

Fle Edt Wew Format Help

CG000 DSP Core
Support Library

=] dst
Memorny Allocate

Memory Copy
Memaory Allocate

Memory Copy

C8000 Ca000
IRGN |
Hardware Intemrupt CPU Timer
Hardware Intemrupt CPU Timer

fiip

Idle Taszk
Idle Task

The following figure shows the DM642 EVM library contents.

2-25

2 Targeting C6000 DSP Hardware

=1 Library: dm642evmiib

Fle Edt View Format Help

Ready

DME42 EVIM
Board Support Library
DMESZEVM Y p A4 OhS4Z2EVM oS4z
Chp Ch
Video ADC Crp Cr Video DAC Video Port
Video Capture Video Display Raw Capture
DME4ZEVM
LED
LED Reset
OhS42EVM OhS42EWVM
{000D1111) i (11110000}
FPGA GPIC Read FPGA GPIO Write
Read Write
DME4ZEVM DME4ZEVM
b
Audio ADC Audio DAC
Audio ADC Audio DAC
|100% |Locked

4

In the next figure you see the blocks in the C6416 DSK library.

2-26

Using the C6000Iib Blockset

[ZILibrary: c6416dsklib - 10| x|
File Edit ew Format Help
C6416 DSK
Board Support Library
Line In CE416 DSK
C6416 DSK | A
ADC
aADC s
C6416 DSK
LED
LED Resat
CE416 DSK |
DIF Switch
Switch

Similarly, the figure below shows the C6713 DSK blocks.

[ILibrary: c6713dsklib -0l x|
File Edit Wew Format Help
C6713 DSK
Board Support Library
Line In
CET13 DSK b CE‘?EECDSK
ADC
ADC DAC
CAT13 DSK
LED
LED Resat
CET13 DSK |
DIP Switch
Switch

2-27

2 Targeting C6000 DSP Hardware

All C62x blocks appear in this figure that shows the C62x DSP library.

=101 x|

File Edit Miew Formab Help

C62x DSP Library

Corwersions

TICE TICE
@ 3 @ 3
FLTOOS Q15TOFL
Comert Flaling: Comert .15
Poinl o Q.15 o Floaling: Point
Transforms

TICE TICE TICE TICE

3 3 3 3
BITHEV_CPLX AADDE AADDE FFT1EX1ER
Bit Aeverss Aadie-2 FFT Aadin-2 IFFT FFT
Filtering

TICE TICE TICE TICE

3 3 3 3
FIA_CPLX FIR_{5EH FIH_R4 FIH_R&
Compls FIR Gememl Aeal FIR Azdie- 4 Aeal FIR Azdie-8 Aeal FIR
T1C6 TICE T1C6 T1C6
. ¥ @ Ak . .
@ 3 @ 3 @ 3
B HE
FIR_STYH FIALKMES IR LAT IR
Symmalric Aeal FIR . Rl Forward Lallics Real IR
LMS Adaplive FIR Al Pole 11

Math and Matrices

TICE2s TICE2s " TICER: 4 TICER: TICE2s
Q? F Q? F @ L) @ \r. L Q? F
AUTOCOR BEXP " pOTPROD B AT muL MAT_TRANS
Aukecarmskblion Bleezk Exponent e kot Dol Produe ! Matrix Mulliphy Malrs Trarsposs
TICE2s TICE2s TICE2s " TICEz TICE2s
@ E @ E @ E @ L @ E
MAXIDK MAXVAL MINYVAL ¥ MuLe WG
Ve bor Meimum Incks Ve bor Meimum Valus Ve kor Minimum Valus Vst Mulliphy Veskor Hegaks
TICE2s T TICE2s
Fk TICEz X
% =
Er Al v
HECIF16 WECSUMED W_VEC
Ao procal Ve ior Sum ol Squares ‘Waighied Veckor Sum

2-28

Using the C6000Iib Blockset

The C64x DSP library contains all of the blocks shown in the following figure.

[! Library: tice4dsplib : o [=] |
File Edit \Miew Format Help
_ F
Cédx DSP Library f—
Conwersions
TICEL TICEL
@ 3 @ 3
FLTOOS CISTOFL
Comarl Flaling Comar .15
Paint o .15 s Flocling: Paint
Transforms
TICE TICE TICE TICE
3 3 3 3
BITREY_CPLY RADDE RADDE FFTIBX16A
Bit Aeriarss Radie-2 FFT Radie-2 IFFT FFT
Filtering
TICE TICE TICE TICE
3 3 3 3
FIR_CPLX FIR_(GEN FIR_R4 FIR_R&
Compk= FIR Gionoral Aeal FIR FAadin- 4 Aeal FIR FAaxdi-8 Aeal FIR
TICELs TR TICELs TICELs
*. « @ nl * *
B HE
FIR_SYM FIRLME IIALAT I
Symmelre Heal FIR n Aeal Foreard Laltics Aeal IR
4 LM5 Adapiiee FIR All Pok IR
hath and Matrices
TICE& TICE& " TR N TR TICE&
AUTOCOR BEXP * LoreRoD B AT ML MAT_TRANS
Auecarmklion Bl k Exponant Ve tor Dol Produs [T E"""'Prr' Malrx Traregss
! TICE& TICE& " TR ! TICE&
LT HEE®
Weckor Muliply Veetar Hegak
(E - (E
F TICELs % ‘ E
E u o
RECIPIG VECSU ST W_WEC s
Hec iprocal Vet kot Sum ol Squares ‘Waighkd Vector Sum - I

2-29

2 Targeting C6000 DSP Hardware

Blocks for communicating from the host to the target appear in the Host
Communication library, shown here.

Ej Library: hostcommiib i |EI |£|

Hle Edit View Format Help
O sdE| BB s 4|20

Host Communication Blocks

)
Msg
UDF Receive UDF Send
UDF Recsive UDF Zend
Byte Pad: Byte Unpade
Byte Fad Byte Unpadk

Byte Reversal

Byte Reversal

As shown in the next figure, library DSP/BIOS Support holds the blocks for
adding DSP/BIOS to generated code.

2-30

Using the C6000Iib Blockset

[=] Library: dspbiosfib
Fle Edit View Format Help
Old&E| $ 2R (== 4=

=]

DSP/BIOS Support Library

DSF/BIOS DSF/BIOS
TSk TSk
Task Triggered Task
DSP/BIOS
HWI

Hardware Intemrupt

Ready [100% |Locked o

The final library holds blocks for communicating from the target to the host—
C6000 DSP Communication.

2-31

2 Targeting C6000 DSP Hardware

2-32

=] Library: targetcommiib - o] x|
Hle Edt WVew Format Help
DedE| iR a4 |0 REE
C6000 DSP Ethernet
Communication Support
Library
C8000 CE000 f) Mg CE000
Msg
IP Canfig UDF Receive Len L= UDP Send
IF Canfig UDF Recsive UDF S=nd
CE000 f) Mg CE000
Req Msg Emr
TCRIF Receivd en Re91orF Send
TCRIIF Recsive TCRIF S=nd
Byte Pad Byte Unpadk Byte Reversal
Byte Pad Byte Unpads Byte Reversal
Ready [100% |Locked o

Configuring ADC Blocks

To drive and test your DSP application on a C6711 DSK, you use signals from
external sources, such as signal generators, audio equipment, or microphones.
In some cases, you may generate your input data in code using Simulink blocks
in your model or from a source block, such as a signal generator; configuring
the ADC block remains the same.

The ADC and DAC blocks provide physical pathways from and to external
sources and displays. They behave like source and sink blocks. They differ from
sources and sinks in that they exchange data with external devices through
analog input and output connectors, not the MATLAB workspace, and they
work only for the C6000 boards.

You add ADC blocks to a model in the same way that you add other Signal
Processing Blockset blocks, or Simulink blocks. You can add at most one ADC
block to a model. When you add C6000 blocks to your Simulink model, you set
parameters that determine how each block handles data.

Using the C6000Iib Blockset

Adding the ADC block to your Simulink model enables the codec on the target
to accept input from your external source. By connecting your source to the
LINE IN connector on the board mounting bracket, you introduce signals to the
board. Your ADC block defines the signal format the codec uses to sample,
digitize, and send signals to the digital signal processor.

When you build your Simulink model, the build process includes the software
to implement the ADC-defined codec operation into the code downloaded to the
board.

Configuring an ADC block includes setting as many as nine parameters on the
Block Parameters dialog box.

Choosing and setting these parameters are covered in the following sections.
To help you select the settings, this section provides some guidelines for
common DSP uses and applications for each parameter. While the examples
are not exhaustive, the suggestions may help you select settings that work well
for your application.

Most of the configuration options for the block affect the codec. However, the
Output data type, Samples per frame, and Scaling options relate to the
model you are using in Simulink, the signal processor on the board, or direct
memory access (DMA) on the board. In the following table, you find each ADC
block option listed with the target board hardware affected (all parameters
may not appear in every ADC blocks).

Option Affected Hardware

ADC Source Codec

Inherit sample time TMS320C6xxx digital signal processor
Mic Codec

Output data type TMS320C6xxx digital signal processor
Sample rate (Hz) Codec

Samples per frame Direct memory access functions
Scaling TMS320C6xxx digital signal processor
Source gain (dB) Codec

2-33

2 Targeting C6000 DSP Hardware

2-34

Option (Continued) Affected Hardware

Stereo (C6701 EVM ADC only) Codec
Word length Codec

Selecting the ADC Source

When you set up your target to accept input for your model, you tell the
hardware where the input to the codec comes from. Selecting Line in and
Mic in on the C6701 EVM corresponds to the two different input connectors on
the board, with different input signal levels expected. On the DSK, the Line in
and Mic in options use the same connector, but generate different signal levels
to the codec. Both boards include the Loopback option that feeds the output
from the DAC back to the ADC input.

Choosing the Sample Rate

To open the Block Parameters dialog box, right-click the ADC block in your
Simulink model and select Block Parameters from the context menu. You see
the C6711 ADC block dialog box presented below.

Using the C6000Iib Blockset

|] source Block Parameters: ADC X|
~CE/TDSK ADC (mask)

Configures the codec and the TMS320C6711 peripherals to output & constant
strearmn of data collected from the analog jacks on the C6711 DSK board. The
fallowing codec characteristics cannot be changed:

sampling rate - 8 KHz

data format - linear 16 hit

no. of channels -1 {rmana)

—Farameters

ADG source T - |

= +20 dB Mic gain boost

Outputdatalype:l Doukle

Scaling:l MNomalize

Lef Lo Le]

SOUrcE gair (dEI):I 0.o
Samples per frame:
(54

[Inherit sample time

(8] I Cancel Help

Select your sample rate from the list. 5521 Hz is the lowest rate and 48000 Hz
is the highest. You cannot set a sample rate that is not on the list. The available
rates are derived from the clocks on the codec and cannot be changed.

The C6711 DSK uses a fixed sample rate of 8 KHz.

For many applications, your sample rate should reflect the standards for the

industry. For example, if you are developing a professional audio application,
working with digital audio tape (DAT) processes, or developing applications for
high fidelity audio use, consider using 48000 Hz sampling rate in your model.

For applications used by CD players and sound cards in personal computers,
the standard sampling rate is 44.1 KHz, and some of the lower rates such as
22.05 or 16 KHz. Moving Picture Expert Group (MPEG) audio applications
often select a 32 KHz sampling rate.

2-35

2 Targeting C6000 DSP Hardware

2-36

When you are developing an application for speech, telephony, or “toll quality”
speech processing, the 8 KHz sampling rate, paired with an 8-bit data format
that uses a compressed format such as A-law, best matches current standards.

Configuring DAC Blocks

In most cases, DAC blocks inherit attributes from the ADC block in the model,
or from the previous nonvirtual block. In addition, you can choose to use the
overrun indicator function provided in the Embedded Target for TI C6000 DSP.

Two of the configuration options for the block affect the codec. The remaining
options relate to the model you are using in Simulink and the signal processor
on the board. In the following table, you find each option listed with the
hardware affected.

Option Affected Hardware
DAC attenuation Codec

Overflow mode Digital Signal Processor
Scaling Digital Signal Processor

When you double-click the C6711 DSK DAC block, you see the dialog box
shown here.

Using the C6000Iib Blockset

2] sink Block Parameters: DAC X|
—ChE7T1DEK DAC (mask)

Configures the codec and the TMS320C6711 peripherals to send a stream of data
to the output jack on the C6711 DSK board. The following codec characteristics
cannot be changed:

sampling rate - § KHz

data farmat - linear 16 bit

no. of channels - 1 (maona)

—Parameters
Scaling: [NEliEHE]
DAC attenuation (dB): | 0.0 |
Crerflo mode:l Saturate j

OK I Cancel | Help | Apply |

Selecting the Scaling

Select the scaling that best suits your model and your output device. For most
applications, choose the scaling to match the setting of the ADC block if your
model uses it.

Scaling defines the range of the input values from the codec. Independent of
your setting for Scaling, signal values are stored as floating-point data. In
Normalize mode, the signal ranges from -1 to 1 at the output of the DAC block.

Selecting the Overflow Mode

Models running on the target can encounter situations where calculations
exceed the range represented by the data type. The Overflow mode option on
the Sink Block Parameters: DAC dialog box lets you select how the block
responds to overflow conditions. Select one of the following settings:

® Saturate—Arithmetic results that fall outside the representable range of
the selected data type are limited to the largest or smallest values. Saturated
values are set to the nearest value that the data type can represent, either

2-37

2 Targeting C6000 DSP Hardware

2-38

the largest representable value in the case of arithmetic overflow or the
smallest representable value in the case of arithmetic underflow.

Before input data reaches the codec, the Embedded Target for TI C6000 DSP
uses an efficient linear assembly algorithm to determine whether the input
values exceed the representable range of your selected data type. When input
values exceed the range of the data type, the saturation algorithm clips the
input to the nearest representable value and passes the clipped, or saturated,
value to the codec.

® Wrap—Arithmetic results that fall outside the numeric range of the selected
data type are wrapped into the range of the data type. The wrapping
algorithm uses modular arithmetic relative to the largest or smallest
representable number to determine the value of the result after wrapping.

Configuring LED Blocks

You use the LEDs on the evaluation module as indicators for your process. For
example, you might use an LED to indicate that your algorithm has completed
a specified calculation or reached a particular point in the processing.

To use an LED as an indicator, add an LED block to your model, and send a
nonzero signal to the block to light the specified LED—either internal or
external. Any nonzero scalar sent to the LED block lights the LED and keeps
it lit until the block receives a scalar with zero value. The zero value scalar
turns off the selected LED.

Although the C6711 DSK offers three user-defined LEDs, the C6711 DSK LED
block treats all three as one LED, enabling them as a group. For this reason
you can include only one C6711 DSK LED block in a model.

Using the Overrun Indicator Feature

When your digital signal process application cannot complete the calculations
and data manipulations required to yield a result before the available clock
cycles expire, your model can generate unreliable data. Failing to complete an
algorithm is called overrunning, and is one of the most important errors to
identify and eliminate in digital signal processing design and implementation.

The Embedded Target for TI C6000 DSP provides a pair of overrun indicator
options—Overrun action and Overrun notification method—that you use to
determine what happens when your application overruns and how or if to
notify you when your process runs out of processing time before it completes its

Using the C6000Iib Blockset

tasks. To signal that your algorithm has overrun its limits, the Embedded
Target for TI C6000 DSP can turn on the external LED on your C6711 DSK and
leave it on until you reset the evaluation module.

The overrun feature can also print a message that the overrun occurred to the
standard output device—stdout (or the message log if your application uses

DSP/BIOS). One more option lets you both light the LED and print a message.

Limitations of the Overrun Indicator
In two cases, the overrun indicator does not work:

¢ In multirate systems where the rate in the process is not the same as the
base clock rate for your model. In this case, the timer/scheduler in the
Embedded Target for TI C6000 DSP provides the interrupts for setting the
model rate and you cannot use the overrun indicator.

® In models that do not include ADC or DAC blocks. In this case, the

timer/scheduler provides the software interrupts that drive model
processing.

To detect overrun conditions, the generated C code sets and checks a persistent
flag during each iteration of the direct memory access (DMA) interrupt service
routine.

On the C6711 DSK, the software turns on all three user-defined LEDs on the
board to indicate an overrun condition.

Note The Overrun notification method selections that turn on the LEDs
use the external LED or user-defined LEDs to signal model conditions. If you
are using the overrun indicator, consider not using an LED block to trigger
the user LEDs on the C6711 DSK until you stop monitoring your process for
overrun conditions.

To enable the overrun indicator, choose one of three options for Overrun
action to determine how to respond to an overrun condition in your model:

® None—Your model does not respond to overrun conditions during processing.

® Notify and_continue—When your model runs out of clock cycles before
completing enough of the processing algorithm, the overrun indicator

2-39

2 Targeting C6000 DSP Hardware

2-40

executes the option you chose for Overrun notification method. The model
continues to run without pause.

® Notify_and_halt—When your algorithm runs out of clock cycles before
completing the required calculations and manipulations, the model stops
executing and notifies you about the overrun using the method you select for
the Overrun notification method.

Overrun notification method provides three ways to tell you when an overrun
has occurred:

® Print_message—Print a message to stdout, or the message log when your
application uses DSP/BIOS

® Turn_on_LEDs—Illuminate all the user LEDs on the C6711 DSK
® Print_message_and_turn_on_LEDs—Light the LEDs and print a message

Configuring Reset Blocks

Each target library offers a block that performs a software reset of the
appropriate board—a Reset block. While they are blocks, Reset blocks do not
require input; they do not provide output; and they do not need to be connected
to any other block.

When you add a Reset block to a model window, the block provides single-click
access to resetting your board. Click on the block in your model and your target
processor returns to its original state, with the memory locations, registers,
and other peripherals reset to their default values before you loaded or ran

a program.

Configuring Target Preferences Blocks

One block is required in all C6000 targets models—a block from the Target
Preferences library in the C6000 Block (c60001ib) library. Adding one of these
blocks to your model provides direct access from the model to the C6000 Target
Preferences dialog box, as shown in the following figure. From this dialog box,
you choose your target board and processor, define your target board memory
map, and set data and code sections, such as compiler, DSP/BIOS, and user
sections.

Using the C6000Iib Blockset

=] Library: c6000tgtprefib * - |I:I |£|

Fle Edit View Format Help

Target Preference Blocks
for Supported Evaluation Boards

Ca711DSK

CaT01EVM DME42EVIM

Template Target Preference Block
for Custom Boards

Custom C8000

To target a model to a C6000 processor-based target, add only one of the target
preferences blocks to the model. The following table describes these blocks. The
blocks with specific board names represent blocks that are preconfigured with

2-41

2 Targeting C6000 DSP Hardware

default values to match the attributes of the named Texas Instruments DSP
starter kits and evaluation modules:

Target Preferences Block Description

Custom C6000 Provides access to the hardware set up for
targeting any C6000 processor-based board.
Note that it does not set any default values.
When you add this block to a model, you must
set all the options on each available pane—
board information, memory mapping, section
layout, and DSP/BIOS.

C6416DSK Sets default values for targeting the C6416
DSK. After you add this block to your model,
you can modify the default values as you
require. Parameters in this block are set to
match the board attributes.

C6711DSK Sets default values for targeting the C6711
DSK. After you add this block to your model,
you can modify the default values as you
require. Parameters in this block are set to
match the board attributes.

C6713DSK Sets default values for targeting the C6713
DSK. After you add this block to your model,
you can modify the default values as you
require. Parameters in this block are set to
match the board attributes.

DM642EVM Sets default values for targeting the DM642
EVM. After you add this block to your model,
you can modify the default values as you
require. Parameters in this block are set to
match the board attributes.

2-42

Using the C6000Iib Blockset

Note Every model that you target to a C6000 processor-based board must
include one target preferences block. An error is reported if you do not include
the target preferences block or include more than one.

If the target preferences block in your model indicates a target name which
does not exist in CCS Setup, Embedded Target for TI C6000 DSP places the
new project into the CCS IDE window for board 0 as defined in the CCS Setup
Utility when you generate a project or code from the model.

When you have more than one target configured for CCS, such as boards 0 and
1, this default behavior may not put the project in the target you intend.
Warning messages such as

File does not match the target type.

may indicate that the project is in the wrong, or an unintended, target location.

Double-clicking one of the above blocks in a model opens the C6000 Target
Preferences dialog box, shown in the following figure in the custom board
configuration.

2-43

2 Targeting C6000 DSP Hardware

) C6000 Target Preferences\Custom

=1o]]
| Memary | Sections |DSF'EEIIOS Ii

Device:

Board Propetties
Board type:

CPU clock speed:

[~ Simulator

ICustom

[5201

H
I 200 MHz

" Enahle High-Speed RTLX

Libraries

Board Custorn Code

Include paths

Initialize functions
Terminate functions

[

=

Link to Code Cormposer Studio
CCE board name:

IDMEMB Cycle Accurate Simulator

CCS processar narne:

[TMS32006400

I

0K

| Apply Cancel | Help |

All target preferences block dialog boxes provide tabbed access to panes that
include options you set for the target processor and target board:

® Board info—Select the target processor and board, set the clock speed, and

identify the target.

® Memory—Set the physical memory layout on the target processor and

board.

® Sections—Determine the allocation of the code and data sections in the
target memory such as where to put the DSP/BIOS and compiler sections.

2-44

Using the C6000Iib Blockset

¢ DSP/BIOS—Set the DSP/BIOS options for the task manager.

Board Info Pane

The following options appear on the Board Info pane for the C6000 Target
Preferences dialog box.

Board Type

Lets you enter the type of board you are targeting with the model. You can
enter Custom to support any board based on one of the supported processors, or
enter the name of one of the supported boards, such as C6711DSK. If you are
using one of the explicitly supported boards, choose the target preferences
block for that board and this field shows the proper board type.

Device

Lets you select the type of processor on the board you select in CCS board
name. The processor type you enter determines the contents and setting for
options on the Memory and Sections panes in this dialog box. If you are
targeting one of the supported boards, Device is disabled and the selected
device is fixed.

CPU Clock Speed (MHz)

Shows the clock speed of the processor on your target. When you enter a value,
you are not changing the CPU clock rate, you are reporting the actual rate. If
the value you enter does not match the rate on the target, your model real-time
results may be wrong, and code profiling results will not be correct.

You must enter the actual clock rate the board uses. The rate you enter here
does not change the rate on the board. Setting CPU clock speed to the actual
board rate allows the code you generate to run correctly according to the actual
clock rate of the hardware.

When you generate code for C6000 targets from Simulink models, you may
encounter the software timer. If your model does not include ADC or DAC
blocks, or when the processing rates in your model change (the model is
multirate), you automatically invoke the timer to handle and create interrupts
to drive your model.

Correctly generating interrupts for your model depends on the clock rate of the
CPU on your target. C6711 DSK hardware uses a fixed clock rate of 150 MHz;

2-45

2 Targeting C6000 DSP Hardware

2-46

you can not change the clock rate. Other C6000 processors allow different clock
speeds.

For the timer software to calculate the interrupts correctly, Embedded Target
for TT C6000 DSP needs to know the actual clock rate of your target processor
as you configured it. CPU clock speed lets you tell the timer the rate at which
your target CPU runs. You are telling the software timer what rate to use to
match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock speed to calculate
the time for each interrupt. For example, if your model includes a sine wave
generator block running at 1 KHz feeding a signal into an FIR filter block, the
timer needs to create interrupts to generate the sine wave samples at the
proper rate.

Using the clock rate you choose, 100 MHz for example, the timer calculates the
sine generator interrupt period as follows for the sine block:

® Sine block rate = 1 KHz, or 0.001 s/sample
e CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires

* 100000000/1000 = 1 Sine block interrupt per 1000000 clock ticks

So you must report the correct clock rate or the interrupts come at the wrong
times and the results are incorrect.

Simulator

Select this option when you are targeting a simulator rather than a hardware
target. You must select Simulator to target your code to a C6000 simulator.

Enable High-Speed RTDX

Select this option to tell the code generation process to enable high-speed
RTDX for this model.

CCS Board Name

Contains a list of all the boards defined in CCS Setup. From the list of available
boards, select the one that you are targeting your code for.

Using the C6000Iib Blockset

CCS Processor Name

Lists the processors on the board you selected for targeting in CCS board
name. In most cases, only one name appears because the board has one
processor. In the multiprocessor case, you select the processor by name from
the list.

Memory Pane

When you target any board, you need to specify the layout of the physical
memory on your processor and board to determine how use it for your program.
For supported boards, the board-specific target preferences blocks set the
default memory map.

2-47

2 Targeting C6000 DSP Hardware

2-48

) C6000 Target Preferences - ol x|

‘Wermory 1| Sections | DSPrmios |
Physical memory
CETEEN] e [pRa
IDRaAshd
Address: I 000000000
Langth: I 000010000
Contents: ICode -I

Board Info |

LI Add | Remave |

Heap

[~ Create heap Heap size: I 1000
[Define lakel Heap label: I segmentname

L2 cache

I~ Enahle |2 cache

L2 cache size; |32 kh 'l

OK Apply | Cancel | Help

The Memory pane contains memory options in three areas:

¢ Physical Memory—specifies the processor and board memory map
® Heap—specifies whether you use a heap and determines the size in words

e 1.2 Cache—enables the L2 cache (where available) and sets the size in kB

These options may affect the options on the Sections pane. Selections you
make here can change how you configure options on the Sections pane.

Most of the information about memory segments and memory allocation is
available from the online help system for Code Composer Studio.

Using the C6000Iib Blockset

Physical Memory Options

This list shows the physical memory segments available on the board and
processor. By default, target preferences blocks show the memory segments
found on the selected processor. In addition, the Memory pane on
preconfigured target preferences blocks shows the memory segments available
on the board, but off of the processor. Target preferences blocks set default
starting addresses, lengths, and contents of the default memory segments.

The default memory segments for each processor and board are different. For
example:

® Custom boards based on C670x processors provide IPRAM and IDRAM
memory segments by default.

® C6711DSK boards provide SDRAM memory segment by default

Name

When you highlight an entry on the Physical memory list, the name of the
entry appears here. To change the name of the existing memory segment, select
it in the Physical memory list and then type the new name here.

Note You cannot change the names of default processor memory segments.

To add a new physical memory segment to the list, click Add, replace the
temporary label in Name with the one to use, and press Return. Your new
segment appears on the list.

After you add the segment, you can configure the starting address, length, and
contents for the new segment. New segments start with code and data as the
type of content that can be stored in the segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as newsegment or
newSegment.

Address

Address reports the starting address for the memory segment showing in
Name. Address entries are in hexadecimal format and limited only by the
board or processor memory.

2-49

2 Targeting C6000 DSP Hardware

2-50

When you are using a processor-specific preferences block, the starting address
shown is the default value. You can change the starting value by entering the
new value directly in Address when you select the memory segment to change.

Length

From the starting address, Length sets the length of the memory allocated to
the segment in Name. As in all memory entries, specify the length in
hexadecimal format, in minimum addressable data units (MADUSs). For the
C6000 processor family, the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the length shown is
the default value. You can change the value by entering the new value directly
in this option.

Contents

Contents details the kind of program sections that you can store in the memory
segment in Name. As the processor type for the target preferences block
changes, the kinds of information you store in listed memory segments may
change. Generally, the Contents list contains these strings:

® Code—allow code to be stored in the memory segment in Name.
® Data—allow data to be stored in the memory segment in Name.

® Code and Data—allow code and data to be stored in the memory segment in
Name. When you add a new memory segment, this is the default setting for
the contents of the new element.

You may add or use as many segments of each type as you need, within the
limits of the memory on your processor.

Add

Click Add to add a new memory segment to the target memory map. When you
click Add, a new segment name appears, for example NEWMEM1, in Name and on
the Physical memory list. In Name, change the temporary name NEWMEM1 by
entering the new segment name. Entering the new name, or clicking Apply
updates the temporary name on the list to the name you enter.

Using the C6000Iib Blockset

Remove

This option lets you remove a memory segment from the memory map. Select
the segment to remove on the Physical memory list and click Remove to
delete the segment.

Create Heap

If your processor supports using a heap, as do the C6711 or C6701, for example,
selecting this option enables creating the heap, and enables the Heap size
option. Create heap is not available on processors that either do not provide
a heap or do not allow you to configure the heap.

Using this option you can create a heap in any memory segment on the
Physical memory list. Select the memory segment on the list and then select
Create heap to create a heap in the select segment. After you create the heap,
use the Heap size and Define label options to configure the heap.

The location of the heap in the memory segment is not under your control. The
only way to control the location of the heap in a segment is to make the segment
and the heap the same size. Otherwise, the compiler determines the location of
the heap in the segment.

Heap Size

After you select Create heap, this option lets you specify the size of the heap
in words. Enter the number of words in decimal format. When you enter the
heap size in decimal words, the system converts the decimal value to
hexadecimal format. You can enter the value directly in hexadecimal format as
well. Processors may support different maximum heap sizes.

Define Label

Selecting Create heap enables this option that allows you to name the heap.
Enter your label for the heap in the Heap label option.

Heap Label

Enabled by selecting Define label, you use this option to provide the label for
the heap. Any combination of characters is accepted for the label, except
reserved characters in C/C++ compilers.

2-51

2 Targeting C6000 DSP Hardware

2-52

Enable L2 Cache

C621x, C671x, and C641x processors support an L2 cache memory structure
that you can configure as SRAM and partial cache. Both the data memory and
the program share this second-level memory. C620x DSPs do not support L2
cache memory and this option is not available when you choose one of the
C620x processors as your target.

If your processor supports the two-level memory scheme, this option enables
the L2 cache on the processor.

L2 Cache size

When you enable the L2 cache, use this list to determine the size of the cache
allotted. Select the size of the cache from the list.

Sections Pane

Options on this pane let you specify where various program sections should go
in memory. Program sections are distinct from memory segments—sections
are portions of the executable code stored in contiguous memory locations.
Among the sections used generally are .text, .bss, .data, and .stack. Some
sections relate to the compiler, some to DSP/BIOS, and some can be custom
sections as you require.

For more information about program sections and objects, refer to the CCS
online help. Most of the definitions and descriptions in this section come from
CCS.

Using the C6000Iib Blockset

} C6000 Target Preferences - ol x|

Board Info | hdemary | Sections DSP/ABIOS li

Compiler sections

4 | Description: C code
-switch
‘hss

far Flacement: [|pram -
.cinit
_pinit LI

DEREIDS sections/objects

Description: Argument buffer
~ghlinit
Aredata

_sg_sdata Placement: I|DRAM 'l
.obj

‘hios LI

Data object placement: IIDRAM 'l
Code ohject placement: IIF'RAM 'l
Custom sections

& | MName: I.SEC1
Placement: I|DRAM -I

LI Add | Remove |

Ok | Apply | Cancel | Help |

Within this pane, you configure the allocation of sections for Compiler,
DSP/BIOS, and Custom needs.

The following table provides brief definitions of the kinds of sections in the
lists.

2-53

2 Targeting C6000 DSP Hardware

2-54

Note All sections do not appear on both lists. The list on which the string

appears is shown in the table.

String Section List Description of the Section Contents

.args DSP/BIOS Argument buffers.

.bss Compiler Static and global C variables in the code.

.bios DSP/BIOS DSP/BIOS code if you are using DSP/BIOS
options in your program.

.cinit Compiler Tables for initializing global and static
variables and constants.

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants.

.data Compiler Program data for execution.

.far Compiler Variables, both static and global, defined as
far variables.

.gblinit DSP/BIOS The load allocation of the DSP/BIOS
startup initialization tables section.

Lhwi DSP/BIOS Dispatch code for interrupt service
routines.

.hwi_vec DSP/BIOS Interrupt Service Table.

.obj DSP/BIOS Configuration properties that the target
program can read.

.pinit Compiler Load allocation of the table of global object

constructors section.

Using the C6000Iib Blockset

String Section List Description of the Section Contents

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules.

.stack Compiler The global stack.

.switch Compiler Jump tables for switch statements in the
executable code.

.sysdata DSP/BIOS Data about DSP/BIOS.

.sysinit DSP/BIOS DSP/BIOS initialization startup code.

.sysmem Compiler Dynamically allocated object in the code.
Contains the heap.

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants.

.trcdata DSP/BIOS TRC mask variable and its initial value

section load allocation.

You can learn more about memory sections and objects in your Code Composer
Studio online help. Most of the definitions and descriptions in this section come

from the online help for CCS.

Compiler Sections

During program compilation, the C6000 compiler produces both uninitialized
and initialized blocks of data and code. These blocks get allocated into memory
as required by the configuration of your system. On the Compiler sections list
you find both initialized (sections that contain data or executable code) and

uninitialized (sections that reserve space in memory) sections. The initialized

sections are:

® cinit
® .const
® _switch

® _text (created by the assembler)

2-55

2 Targeting C6000 DSP Hardware

2-56

These sections are uninitialized:

® _bss (created by the assembler)

e far
e stack
® _sysmem

Other sections appear on the list as well:
e .data (created by the assembler)

® .cio

® .pinit

Note The C/C++ compiler does not use this section.

When you highlight a section on the list, Description shows a brief description
of the section. Also, Placement shows you where the section is presently
allocated in memory.

Description

Provides a brief explanation of the contents of the selected entry on the
Compiler sections list.

Placement

Shows you where the selected Compiler sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments as defined in
the physical memory map on the Memory pane. Select one of the listed memory
segments to allocate the highlighted compiler section to the segment.

DSP/BIOS Sections

During program compilation, DSP/BIOS produces both uninitialized and
initialized blocks of data and code. These blocks get allocated into memory as
required by the configuration of your system. On the DSP/BIOS sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections.

Using the C6000Iib Blockset

Description

Provides a brief explanation of the contents of the selected DSP/BIOS sections
list entry.

Placement

Shows where the selected DSP/BIOS sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments available on
C6000 processors, and changes based on the processor you are using.

DSP/BIOS Object Placement

Distinct from the entries on the DSP/BIOS sections list, DSP/BIOS objects like
STS or LOG, if your project uses them, get placed in the memory segment you
select from the DSP/BIOS Object Placement list. All DSP/BIOS objects use
the same memory segment. You cannot select the location for individual
objects.

Custom Sections

When your program uses code or data sections that are not included in either
the Compiler sections or DSP/BIOS sections lists, you add the new sections
to this list. Initially, the Custom sections list contains no fixed entries, just a
placeholder for a section for you to define.

Name

You enter the name for your new section here. To add a new section, click Add.
Then replace the temporary name with the name to use. Although the
temporary name includes a period at the beginning you do not need to include
the period in your new name. Names are case sensitive. NewSection is not the
same as newsection, or newSection.

Placement

With your new section added to the Name list, select the memory segment to
which to add your new section. Within the restrictions imposed by the
hardware and compiler, you can select any segment that appears on the list.

2-57

2 Targeting C6000 DSP Hardware

2-58

Add

Clicking Add lets you configure a new entry to the list of custom sections. When
you click Add, the block provides a new temporary name in Name. Enter the

new section name to add the section to the Custom sections list. After typing
the new name, click Apply to add the new section to the list. Instead, you can
click OK to add the section to the list and close the dialog box.

Remove

To remove a section from the Custom sections list, select the section to remove
and click Remove. The selected section disappears from the list.

DSP/BIOS Pane

Options on this pane let you specify how to configure tasking features of
DSP/BIOS.

This pane provides options the asynchronous task scheduler uses when you
select the Incorporate DSP/BIOS option in the configuration set for your
model. By default, Incorporate DSP/BIOS is selected and the Embedded
Target for TI C6000 DSP creates separate DSP/BIOS tasks for each sample
time in your Simulink model.

DSP/BIOS tasking blocks provide parameters on their block dialog boxes so you
can specify the DSP/BIOS stack size and stack segment (where the stack is in
memory) for asynchronous tasks created by the DSP/BIOS Task and
DSP/BIOS Triggered Task blocks.

The code generation process uses the options on this pane to configure TSK
entries in the TSK Task Manager in CCS when it creates DSP/BIOS tasks.

When you choose not to use DSP/BIOS in your project, by clearing the
Incorporate DSP/BIOS the configuration set for your model, you disable the
options in this pane and Embedded Target for TI C6000 DSP uses an
interrupt-based scheduler. It does not create or use DSP/BIOS tasks.

For more information about tasks, refer to the Code Composer Studio online
help. Most of the definitions and descriptions in this section come from CCS.

With controls on this pane, shown in the next figure, you configure the options
for DSP/BIOS tasks, such as the task manager and scheduler configuration.
Note that the Sections pane includes DSP/BIOS configuration options as well.

Using the C6000Iib Blockset

The options specify the stack use and locations on the stack for static and
dynamic tasks.

} C6000 Target Preferences ' 2])

Board Info hdemary | Sections DSPIBIOS' 1

TSk Task Manager Properties

Default stack size (bytes): 096

Stack segment for static tasks: I|DRAM 'I
Stack segment for dynamic tasks: IMEM_NULL 'I

{must have a heap allocated)

0K | Apply | Cancel Help

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU context
during thread preemption for task threads. This option sets the size of the
DSP/BIOS stack in bytes allocated for each task. 4096 bytes is the default
value. You can set any size up to the limits for the processor. Set the stack
size so that tasks do not use more memory than you allocate. While any
task can use more memory than the stack includes, this might cause the

2-59

2 Targeting C6000 DSP Hardware

2-60

task to write into other memory or data areas, possibly causing
unpredictable behavior.

Stack segment for static tasks

Use this option to specify where to allocate the stack for static tasks. Static
tasks are created whether or not they are needed for operation, compared
to dynamic tasks that the system creates as needed. Tasks that your
program uses often might be good candidates for static tasks. Infrequently
used tasks usually work best as dynamic tasks.

The list offers options SDRAM and ISRAM for locating the stack in memory,
with SDRAM as the default section. The Memory pane provide more options
for the physical memory on the processor.

Stack segment for dynamic tasks

Like static tasks, dynamic tasks use a stack as well. Setting this option
specifies where to locate the stack for dynamic tasks. In this case, SDRAM is
the only valid stack location in memory.

Code Generation for Subsystems
Generating code for most models is a matter of adding the target preference

block to your model, configuring the target options, and then generating code
with Real-Time Workshop.

When you generate code for a subsystem in a model, as opposed to generating
code for the entire model, you must treat the target preferences block
differently. Real-Time Workshop lets you choose to generate code or build
executables for entire model or for subsystems of the models. For more about
this feature, refer to “Generating Code and Executables from Subsystems” in
your Real-Time Workshop documentation in the online Help system.

With the Embedded Target for TI C6000 DSP, you must do one thing before you
generate code or build an executable from a subsystem—you must add the
target preferences block to the subsystem.

To generate code for a subsystem:

1 Set the top model simulation parameters for the model, such as selecting the
target, the make file, the solver, and more.

Using the C6000Iib Blockset

2 Put a target preferences block for your target in the subsystem from which
you want to generate code.

3 Configure the target preferences block options as required.

4 Right-click on the subsystem and select Real-Time Workshop > Build
Subsystem from the context menu.

The Build Subsystem window opens, displaying a list of the subsystem
parameters. The upper pane displays the name, class, and storage class of
each variable or data object that is referenced as a block parameter in the
subsystem. When you select a parameter in the upper pane, the lower pane
shows the blocks that reference the parameter and the parent system of each
block.

5 After you select the parameters and make adjustments as needed, click
Build to start the code generation and build process.

Note Putting the target preferences block in the subsystem disables
automatic model parameter setting. You do not see a confirmation dialog
about the build process when you generate code for the subsystem.

Configuring DM642 EVM Video ADC and Video DAC
Blocks

Preparing the Video ADC and Video DAC blocks for the DM642 EVM is quite
different from configuring the ADC and DAC blocks for the other supported
hardware. Rather than being just analog-to-digital converters, or
digital-to-analog, the DM642 EVM blocks allow you to capture and display
video data.

While conversion is a part of what they do, the configuration process sets up
the video formats that the video ADC (capture) block accepts and the video
DAC (output) block provides for display.

2-61

2 Targeting C6000 DSP Hardware

2-62

Configuring the Video ADC or Video Capture Block

To capture video from the video inputs on your DM642 EVM, add the DM642
EVM Video ADC block to capture the video input. Options in the block let you
set the output format and output mode of video that leaves the block for
processing in your model. Setting the options configures the peripherals on
your board, and the SAA7115 or TVP5146/5150 video decoders to capture and
reformat video for output from the block for further processing.

—DME42 EVM Video ADC (mask)

Configures the OME42 EVM board peripherals and on-board video decoder
device to receive a stream of video data from the input video port. The output of
the block is a stream of 8-bit per pixel image frames captured from the input
analog video stream. Interlaced frames are combined to form one progressive
image atthe output ports.

—Parameters
Decoderiype: :
Inputportl Paort0 j
Output format I YChCr j
Sample time:
[1/30
Data order: I Row major j

QK I Cancel | Help |

From the available options in the dialog box, you see that you do not need to
configure the block for the type of video input. The block accepts whatever
supported video you provide at the video input ports. Options in the dialog box
let you specify how to output the video from the block to downstream model

Using the C6000Iib Blockset

elements and which video decoder you DM642 EVM uses. The options are
described in the following table.

Option Affected Hardware

Decoder type Video decoder, either SAA7115 or
TVP5146/5150

Input port Video decoder

Output mode SAAT7115H video decoders (available when you
set Decoder type to SAA7115)

Output format SAA7115H video decoders

Sample time Clock rate and decoders

Data order Buffers and decoder

Setting the Decoder Type

Your selection from the list configures the block options to support either the
TVP5146 Decoder on the DM642 EVM or the SAA7115 Decoder, depending on
the model of your board. Choose one option from the list—TVP5146 or SAA7115.
When you select SAA7115 for the type of decoder, the dialog box adds an
option—Output Mode. Generally, older DM642 EVM boards use the SAA7115
decoder option. Newer boards use the default setting TVP5146 decoder. Refer
to “Identifying Your DM642 EVM Board Revision” on page A-6 for information
about identifying the revision of your DM642 EVM.

Choosing the Input Port

Directs the block to capture video from either the 0 or 1 video input port on the
DM642 EVM based on whether you select 0 or 1. The block does not support
port 2 for video input.

Selecting the Output Mode (SAA7115 Decoder Only)

In the DM642 Video ADC dialog box, the option Output mode, available when
Decoder type is SAA7115, sets the size of the frames the block outputs in
pixels and lines, and the frame rate. It also determines how the data frames get
assembled into images. Choosing a mode from the list tells the video decoder to
take the input video stream and convert it to the mode/size you select. Mode

2-63

2 Targeting C6000 DSP Hardware

selection supports the following video standards, shown in the Output mode
list.

Output Mode Description

NTSC 720x480 525 horizontal lines stacked on top of each
other, with varying numbers of lines making
up the horizontal resolution. There are 59.94
fields displayed per second. Each field is a set
of even lines, or odd lines. Displaying the
even and odd fields sequentially by
interlacing them creates each full 60 field
frame. One full frame is displayed about
every 1/30 of a second (30 Hz refresh rate).

NTSC 640x480 Scales the output to standard (SDTV) mode.

Setting the Output Format

Choose one of the following color representations according to what your model
and algorithm require.

Digital Output Format Description

RGB24 Output uses 8 bits each of red, green, and blue
colors to represent the color of each pixel in
the image. RGB color space is
device-dependent.

YCbCr Output from the block includes one luminance
channel Y (essentially the black/white signal)
and two chrominance (color) channels Cb and
Cr to represent the color image data per pixel.
This is the digital standard color space DVDs
use.

Y Black and white video. No color or
chromaticity values.

2-64

Using the C6000Iib Blockset

Your selection determines how the block represents color data in the output.

Sample Time

Sample time tells the block how often to take frames from the video decoder
and buffers. While NTSC video runs at 30 frames/s (1/30 s sample time), you
can sample at any rate below or above the TV rate. Remember that sampling
times that are not 1/30th of a second may either capture incomplete frames,
when Sample time < frame time, or miss frames/fields when

Sample time > frame time.

Note that

¢ The sample time you specify becomes the DM642 timer period that drives the
execution of your model.

® Your generated application is not synchronized with the input video signal—
the application always runs on the processor timer.

Data Order

With data order, you control the way the video decoder stores and outputs video
data fields and frames of images. Choose one of these options from the list.

® Row major—store video data in row major order. This is the default setting
and matches most video data.

e Column major—store video data in column major order. Simulink® and
MATLAB both use this format to store images and matrices.

DM642 EVM Video ADC blocks store the image data in row major format
because most video capture devices use a scanning order of left-to-right and
top-to-bottom, favoring the rows.

MATLAB and Simulink use column major ordering to store image and matrix
data. Therefore, some of the Simulink blocks may not work correctly or as
expected with the DM642 EVM Video ADC blocks.

Configuring the Video DAC or Video Output Block

To provide video output from your running process on your target, add the
Video DAC block to your model. Options for the block let you determine the
video format for the output and center the image in the display, as shown here.

2-65

2 Targeting C6000 DSP Hardware

2-66

E] Sink Block Parameters: Video Display il

—DMB42 EVM Video DAC (mask)

Configures the DME42 EVM board peripherals and on-board SAAT105 device to
send a stream of video data to the output video port. The block inputs are of
unsigned &-bit integer type.

The size of the inputimages must be less than or equal to the size ofthe display.
An implicit zero-padding is performed when the inputimage is smaller than the
display. The image can be optionally centered on the display.

—Parameters
Mode:| NTSC 720x480 YCbCr Rd,
Data order:lRow majar j

I~ iCenterimage

0K I Cancel | Help | Apply |

You see from the options that the block provides parameters that control the
video encoder on the DM642 EVM. The following table describes the hardware
affected by these options.

Option Affected Hardware

Mode SAAT7105 video encoder
Data order SAAT7105 video encoder
Center image SAA7105 video encoder

Selecting the Mode

Unlike the DM642 EVM Video ADC block, this DAC block does not convert the
video between formats. Nor does this block inherit any settings from the
DM642 EVM Video ADC block, as some of the other C6000 DAC blocks do.

The Mode option specifies both the video format the block accepts and the
format the block outputs to the video output ports on the EVM.

Using the C6000Iib Blockset

To be able to be displayed, images that you send to the block should be equal to
or smaller than your target display size. If the input images are smaller than
the target display size, the block pads the image by adding zeros to the image.

Analog Output Mode Description

NTSC 720x480 YCbCr Analog output of video data in 720-by-480
pixels format with full color

NTSC 640x480 Y Analog video output in 640-by-480 pixels
format with black and white only (luminance).
No color data.

SVGA 800x600 RGB24 Full super VGA format 800-by-600 pixels with
three color channels: 8-bit red, 8-bit green,
and 8-bit blue data.

Data Order

With data order, you control the way the video decoder stores and outputs video
data fields and frames of images. Choose one of these options from the list.

® Row major—store video data in row major order. This is the default setting
and matches most video data.

® Column major—store video data in column major order. Simulink and
MATLAB both use this format to store images and matrices.

DM642 EVM Video DAC blocks store the image data in row major format
because most video display devices use a scanning order of left-to-right and
top-to-bottom, favoring the rows.

MATLAB and Simulink use column major ordering to store image and matrix
data. Therefore, some of the Simulink blocks may not work correctly or as
expected with the DM642 EVM Video DAC blocks.

Selecting the Center image option instructs the block to center the output
image on the display. Note that centering the image requires some
computation by the processor so there are small time and CPU cycles penalties
for choosing this option. For that reason, Center image is cleared by default.

2-67

2 Targeting C6000 DSP Hardware

2-68

Another note of interest—some cameras pad their video output with zeros to
ensure that the display does not cut off the image on one side, usually the left.
Images that include such padding may appear to be off-center on the display.
In fact, while the displayed image may not appear centered, the electronic
image (the data that compose the displayed image plus the padding which you
can not see) is centered in the display area.

Creating DSP Application Models for Targeting

Create your real-time model for your application the way you create any other
Simulink model—by using standard blocks and C-MEX S-functions. Select
blocks to build your model from any of the following sources:

® Use the ADC, DAC, and LED blocks from libraries in the C6000lib block
library to handle input and output functions for your target hardware

® Use blocks from the TI C62x DSP library in the C6000lib block library to
build fixed-point models

® Use blocks provided with the Real-Time Workshop
® Use blocks from the Signal Processing Blockset
e Use discrete time blocks from Simulink

e Use blocks from any other blockset that meet your needs and operate in the
discrete time domain

® Add a target preferences block from the Target Preferences library
(c6000tgtpreflib) to configure your generated code for your target
processor

Using Logging in Your DSP Applications

Simulink offers various data logging capabilities in the Configuration
Parameters dialog box for your model. Found on the Data Import/Export pane
of the Configuration Parameters dialog box, the implicit logging options let you
specify how and when Simulink logs model operations and gets data from your
workspace.

When your model is running on the target, it cannot communicate directly with
MATLAB. Configuration options that tell your model to send or retrieve data
from your MATLAB workspace do not work and use processing time to no
benefit.

Using the C6000Iib Blockset

To avoid these effects, do not enable options on the Data Import/Export pane
in the Configuration Parameters dialog box in your model.

Turning Off Logging in Your Model

Follow this procedure to disable the logging options in your existing Simulink
model:

1 Select Simulation > Configuration Parameters from the menu bar in your
model.

2 Click Data Import/Export in the Select tree to access the
Data Import/Export pane.

3 Clear the options in the Load from workspace and Save to workspace
fields.
= Input

Initial state

= Time

= States

= Qutput

= Final states

Instead of using the Data Import/Export options in Configuration
Parameters to eliminate logging during code generation and operation, run

dspstartup

from your MATLAB command prompt before you create new Simulink models.
Running dspstartup disables the Data Import/Export options in the
Configuration Parameters dialog box for your new models.

Generating Code from Real-Time Models

This section summarizes how to generate code from your real-time model. For
details about generating code from models in Real-Time Workshop, refer to
your Real-Time Workshop documentation.

You start the automatic code generation process from the Simulink model
window by clicking Build in the Real-Time Workshop pane of the
Configuration Parameters dialog box. The code building process consists of
these tasks:

2-69

2 Targeting C6000 DSP Hardware

1 Real-Time Workshop invokes the function make rtw to start the Real-Time
Workshop build procedure for a block diagram. make rtwinvokes the Target
Language Compiler to generate the code and then invokes the language
specific make procedure.

2 gmake builds file modelname.out. Depending on the build options you select
in the Configuration Parameters dialog box, gmake can download and
execute the model on your TI target board.

2-70

Schedulers and Timing

Schedulers and Timing

The next sections describe how the Embedded Target for TI C6000 DSP
provides timing and scheduling for generated code running on your target.

Timer-Based Versus Asynchronous Interrupt
Processing

Code generated for periodic tasks, both single- and multitasking, runs out of
the context of a timer interrupt. The generated code that represents model
blocks for periodic tasks runs periodically, clocked by the periodic interrupt
whose period is equal to the base sample time of the model.

Note In timer-based models, the timer counts through one full
base-sample-time before it creates an interrupt. When the model is finally
executed, it is for time 0.

This execution scheduling scheme is not flexible enough for some systems, such
as many control and communication systems that must respond to
asynchronous events in real time. Such systems may need to handle a variety
of hardware interrupts in an asynchronous, or aperiodic, fashion.

When you plan your project or algorithm, select your scheduling technique
based on your application needs.

¢ If your application processes hardware interrupts asynchronously, add the
appropriate asynchronous scheduling blocks from the Embedded Target for
TI C6000 DSP library to your model, listed here.

Blocks in the DSP/BIOS Library

= HWI—Create interrupt service routine on C6000 hardware target.
= Task—Create task that runs as separate DSP/BIOS thread.

= Triggered Task—Create asynchronously triggered task.

Blocks in the C6000 DSP Core Support Library

= Hardware Interrupt—Generate interrupt service routine. Same as the
DSP/BIOS interrupt block.

= CPU timer—Generate interrupt service routine.

2-71

2 Targeting C6000 DSP Hardware

2-72

= Idle Task—Create free-running background task

¢ If your application does not service asynchronous interrupts, your model
should include only the algorithm and device driver blocks that specify the
periodic sample times. Generating code from a model like this automatically
enables and manages a timer interrupt. The periodic timer interrupt clocks
the entire model.

Note The preceding description of scheduling and timing applies both to
generated code operation that incorporates DSP/BIOS real-time operating
system (RTOS) and basic code generation mode where DSP/BIOS RTOS is not

included.

Synchronous Scheduling

For code that runs synchronously in the context of the timer interrupt, each
iteration of the model runs after an interrupt has been posted and serviced by
an interrupt service routine (ISR). The code generated for Embedded Target for
TI C6000 DSP uses Timer 1 in DSP/BIOS mode and bare-board mode. Timer 1
is configured so that the base rate sample time for the coded process
corresponds to the interrupt rate. The Embedded Target for TTI C6000 DSP
calculates and configures the timer period to ensure the desired sample rate.

The minimum achievable base rate sample time depends on the algorithm
complexity and the CPU clock speed. The maximum value depends on the
maximum timer period value and the CPU clock speed.

If all the blocks in the model inherit their sample time value, and no sample
time is defined explicitly, Simulink assigns a default sample time of 0.2 second.

Note In timer-based models, the timer counts through one full
base-sample-time before it creates an interrupt. When the model is finally
executed, it is for time 0.

Schedulers and Timing

Asynchronous Scheduling

Embedded Target for TI C6000 DSP facilitates modeling and automatically
generating code for asynchronous systems by using the following scheduling
blocks:

¢ Hardware Interrupt and Idle Task blocks for bare-board code generation
mode

e DSP/BIOS Hardware Interrupt, DSP/BIOS Task, and DSP/BIOS Triggered
Task blocks for DSP/BIOS code generation mode

C6000 Hardware Interrupt blocks enable selected hardware interrupts for the
TI TMS320C6000 DSP, generate corresponding ISRs, and connect them to the
corresponding interrupt service vector table entries.

When you connect the output of the C6000 Hardware Interrupt block to the
control input of a function-call subsystem, the generated subsystem code is
called from the ISRs each time the interrupt is raised.

The C6000 Idle Task block specifies one or more functions to execute as
background tasks in the code generated for the model. The functions are
created from the function-call subsystems to which the Idle Task block is
connected.

The DSP/BIOS Hardware Interrupt block (in DSP/BIOS code generation mode)
has the same functionality as the bare-board C6000 Hardware Interrupt block.
The configuration and low-level handling of the hardware interrupts is
implemented through DSP/BIOS using DSP/BIOS Hardware Interrupt module
and DSP/BIOS dispatcher.

DSP/BIOS Task blocks (DSP/BIOS code generation mode) spawn free-running
tasks as separate DSP/BIOS threads. The spawned task runs the function-call
subsystem connected to its output. Blocks in the subsystem may use various
conditions and techniques to control sharing sources with other tasks.

DSP/BIOS Triggered Task blocks (in DSP/BIOS code generation mode) spawn
semaphore-controlled tasks as separate DSP/BIOS threads. The semaphore
that enables execution of a single instance of the task is posted by an ISR that
is created by a DSP/BIOS Hardware Interrupt block. This block is connected to
a DSP/BIOS Triggered Task block.

2-73

2 Targeting C6000 DSP Hardware

Asynchronous Scheduler Examples

Now you can use an asynchronous (real-time) scheduler for your target
application. Earlier versions of the Embedded Target for TI C6000 DSP used a
synchronous CPU timer interrupt-driven scheduler. With the asynchronous
scheduler you can define interrupts and tasks to occur when you want them to

by using blocks in the following libraries:

e C6000 DSP Core Support

¢ DSP/BIOS Library

Also, you can schedule multiple tasks for asynchronous execution using the
blocks in the C6000 DSP Core Support and DSP/BIOS Library block libraries.

The following figures show a model updated to use the asynchronous scheduler

rather than the synchronous scheduler.

Before

Mic In
C6713 DSK
ADC

N
%8
*L[

2-74

3: Asym

YVVY

Inl
In2
In3
In4

Outl
Oout2
Oout3
Out4

C6713 DSK
Eput DAC

Dyadic Analysis

Filter Bank

After

DSP/BIOS

TSK

Delay Alignment

pp{ Dead Zone |—Pp

; ’

> >)
|- ’

> 3: Asym

Soft Threshold Dyadic Synthesis

Filter Bank

Task

v

function ()

Function-Call
Subsystem

Schedulers and Timing

Model Inside the Function Call Subsystem Block

£0

function

Mic In
C6713 DSK
ADC

B P Inl out1 p| Dead Zone [
Pl In2 out2 > P!
L > B i » C6713 DsK
—>» In3 out3 —> —p» Output?” | DAC
Pl In4 Out4 »
3: Asym gl e > 3: Asym

Dyadic Analysis Delay Alignment Soft Threshold Dyadic Synthesis
Filter Bank Filter Bank

Compatibility Consideration. The V3.0 changes in the real-time scheduler can
break some existing multirate models that contain codec blocks such as the
ADC and DAC. The models affected contain at least one sample rate that is
faster than the codec block rate. You do not run into this problem if all rates in
the model are lower than the codec rate.

The new scheduler provides improved control for your processing and improved
performance. You should recast all of your models to use the new asynchronous
scheduler. To update your models, embed the entire processing algorithm or
system in a function-call subsystem driven by a DSP/BIOS Task or Idle Task
block from the DSP/BIOS Library library.

An example of such a model contains a combination of an ADC block and a DAC
block, with a processing algorithm between them that executes at the higher
rate. If you run code generated for such a model in multitasking or auto solver
mode, you might hear occasional audio glitches or your program may overrun.
The exact symptom of the problem depends on the run-time overrun action
setting in the TIC6000 Code Generation options.

The following model demonstrates one possible model configuration that can
demonstrate the audio problems.

2-75

2 Targeting C6000 DSP Hardware

2-76

FDATool
Line In C6713 DSK
e g Te > —» | —P DAC
ADC Upsample — Downsample DAC
Digital

Filter Design

This multirate model uses two interrupts to control real-time execution of the
generated code:

® A DMA interrupt to drive the execution of the code for ADC and DAC blocks

® A timer interrupt to drive the execution of the code for the FIR filter at an
increased sample rate

In earlier product versions, the generated scheduler constantly synchronized
the DMA and timer interrupts to ensure they remained in sync with one
another, despite the possible clock drift with interrupts that are recorded by
independent clock sources.

With the new real-time scheduler, the product does not synchronize the ADC
and timer interrupts.

One interrupt may get out of sync with the other, with the time difference
between them (drift) fluctuating with changes in the independent interrupt
clocks. When the drift reaches a critical threshold, processing may skip an
instance of a lower-priority task.

At that point, the interrupts are back in sync and the process continues. Losing
synchronization between the interrupts can corrupt the audio signal or lead to
an interrupt overrun.

To avoid the audio problems in an existing model that you cannot update to the
new scheduler, set the run-time overrun action for the model to either None or
Notify and_continue to prevent the program from overrunning.

Uses for Asynchronous Scheduling

The following sections present common cases for the scheduling blocks
described in the previous sections.

Schedulers and Timing

10

function

Mic In
C6416 DSK
ADC

Free-Running DSP/BIOS Task

The following model illustrates a case where a reverberation algorithm runs in
the context of a free-running DSP/BIOS task.

DSP/BIOS

TSK
Task

A 4

function ()

|

C6416 DSK »| |

DIP Switch » T tl]]]]
[

Inl

\ 4

Rate Transition Reverberation

Algorithm

Normally, the algorithms in this type of task run in free-running mode, that is,
they run repetitively and indefinitely. However, in this function-call subsystem
(shown in detail in the following figure), ADC and DAC blocks suspend the
execution of the task until the ADC and DAC data is available.

Each instance of the reverberation algorithm is triggered only after the data
buffer is available (for both ADC and DAC). An asynchronous ADC/DAC device
driver layer separate from the task function manages the triggers condition.
This device driver layer uses a direct memory access (DMA) interrupt to signal
to the DSP/BIOS task when ADC and DAC data become available for the task
function.

3 N
il
Delay Mix1 A~ €6416 DSK
Stage 1 Stage 2 Stage 3 Stage 4 iy DAC

Feedback Gainl

single(0.8) |1

2-77

2 Targeting C6000 DSP Hardware

This model also illustrates how synchronous and asynchronous tasks can work
together. The code generated for C6416 DSK DIP Switch block runs as

a periodic task at the rate of 0.01 s. This is the only periodic task in the model.
It runs out of the context of a DSP/BIOS task scheduled via a timer interrupt
configured to go off every 0.01 second.

In general, Simulink blocks that specify nonzero sample rates, such as the DIP
Switch block, are scheduled by the TIC6000 synchronous scheduler and
executed either from the context of a DSP/BIOS task (if you incorporate
DSP/BIOS in your project) or a hardware interrupt (when you do not
incorporate DSP/BIOS).

To ensure data integrity, Simulink Rate Transition blocks connect the C6416
DSK DIP Switch block with the reverberation algorithm. This transition is
required because the blocks belong to different rate groups. If the synchronous
and asynchronous parts of the model do not interact, the Rate Transition
blocks are not needed.

Idle Task

The following model illustrates a case where the reverberation algorithm runs
in the context of a background task in bare-board code generation mode.

£0)

Idle Task
Idle Task

\ 4

function ()

Reverberation
Algorithm

The function generated for this task normally runs in free-running mode—
repetitively and indefinitely. However, the ADC and DAC blocks in this
subsystem run in blocking mode. As a result, subsystem execution of the
reverberation function is the same as the subsystem described for the
Free-Running DSP/BIOS Task. It is data driven via a background DMA
interrupt-controlled ISR, shown in the following figure.

2-78

Schedulers and Timing

Mic In
C6416 DSK

£0)

function

Feedback Gain

ADC

ADC

-2400
z

Integer Delay

Delay Mix

Hardware Interrupt Triggered DSP/BIOS Task

The next model illustrates a case where a function (Location Command) runs
in the context of a hardware interrupt-triggered DSP/BIOS task.

DSP/BIOS

HWI

\ 4

DSP/BIOS

TSK

Hardware Interrupt

Triggered Task

A 4

function ()

outl

DSP/BIO

TSK

S

C6416 DSK
DAC

DAC

Video task

|

»

A

Location Command

ot |
> T3
M [

Rate Transition

function ()

Text Overlay

The DSP/BIOS Hardware Interrupt block installs an ISR function that signals
a DSP/BIOS task to run when the ISR detects an RTDX interrupt. Signaling
between the ISR and DSP/BIOS triggered task occurs via semaphores. This
task receives an RTDX message carrying the location command for the
downstream Text Insert block in the Text Overlay from the host computer.

The blocks running inside the Location Command and Text Overlay

subsystems are shown in the following figure.

The text overlay subsystem is executed as for the Free-Running DSP/BIOS
Task. A Rate Transition block connects the two subsystems that run at two
different asynchronous rates to ensure data integrity. The execution of two

2-79

2 Targeting C6000 DSP Hardware

asynchronous rates is ordered based on the priority settings for the DSP/BIOS
Task blocks.

Location Command Subsystem Text Overlay Subsystem

£0)

£() ;
function

function

From RTDX » -
ichanl

Outl

Insert Text

From RTDX
DM642EVM Y Y DM642EVM
YPtr_port0
P Cb

cl
CbPtr_port0 d
P Crvideo DAC

i Cr
Video ADC Crptr_porto
Video Capture Video Display

Hardware Interrupt Triggered Task
In the next figure, you see a case where a function (LED Control) runs in the

context of a hardware interrupt triggered task.

C6000

IRON

Hardware Interrupt \ 4
function ()

Hardware Interrupt

LED Control

In this model, the C6000 Hardware Interrupt block installs a task that runs
when it detects an external interrupt. This task then toggles an external

C6416DSK LED on or off.

2-80

Schedulers and Timing

£()
function
lim
| p| C6416 DSK
LED
on/Off LED

Toggle

Scheduling Considerations

When you use the DSP/BIOS task blocks for scheduling, either the DSP/BIOS
Task block or the DSP/BIOS Triggered Task block, you must take care to avoid
some common scheduling pitfalls.

First, the DSP/BIOS operating system always executes the task with the
highest priority. Contrast this execution scheme with that of some other
real-time operating systems (RTOS) where each task gets its fair share of
processing time. Therefore, depending on the situation, there may be cases
where lower-priority tasks never execute because a higher priority task is
never blocked.

A DSP/BIOS task blocks only when a blocking device driver block is included
in the function call subsystem the task is executing, such as ADC/DAC blocks
and C6000 UDP Receive blocks. If a particular DSP/BIOS task executes a
function call subsystem that does not include any device driver blocks, and this
particular task has the highest priority, it never releases the CPU, effectively
disabling all other lower priority tasks in the application.

For more information about asynchronous schedulers, refer to the section on
Asynchronous Support in your Real-Time Workshop documentation in the
online Help system.

2-81

2 Targeting C6000 DSP Hardware

2-82

Real-Time Workshop Options for
C6000 Hardware

Before you generate code with the Real-Time Workshop, set the fixed-step
solver step size and specify an appropriate fixed-step solver if the model
contains any continuous-time states. At this time, you should also select an
appropriate sample rate for your system. Refer to your Real-Time Workshop
documentation for additional information.

Note Embedded Target for TI C6000 does not support continuous states in
Simulink models for code generation. In the Solver options in the
Configuration Parameters dialog box, you must select discrete (no
continuous states) as the Type, along with Fixed step.

The Real-Time Workshop pane of the Configuration Parameters dialog box lets
you set numerous options for the real-time model. To open the Configuration
Parameters dialog box, select Simulation > Configuration Parameters from
the menu bar in your model. The following figure shows the Real-Time
Workshop categories when you are using the Embedded Target for TI C6000
DSP.

Setting Real-Time Workshop Options for C6000 Hardware

E! Configuration Parameters: ¢6701evmafxr/Configuration : il
Select: — Target selection =
~Solver System target file: Iti_cBDDD_ert.tIc Browse... |
- Data Import/Export
- Optimization Language: I c j
=-Diagnostics Description:
-Sample Time —Documentation

Data Integrity
Conversion
Connectivity
Compatibility
Model Referenci...
- Hardware Implemen...
- Model Referencing
[EEReal-Time Workshop
- Comments

- Symbols

- Custom Code
--Debug

-Interface

- Templates

--Data Placement
-Data Type Repl...
- TICEB000 Code G...
- TICB000 Compile...

[~ Generate HTML report
7 Include hyperlinks to madel

™ Launch report after code generation completes

—Build process
TLC options: I
Make command: Imake_rtw

Template makefile: Iti_cBDDD_ert.tmf

—Custom storage class

[~ Ignore custom storage classes

[” Generate code only Build |

=i
QK I Cancel | Help | Apply |

In the Select tree, the categories provide access to the options you use to
control how Real-Time Workshop builds and runs your model. The first
categories under Real-Time Workshop in the tree apply to all Real-Time
Workshop targets including the target and always appear on the list.

The last categories under Real-Time Workshop are specific to the Embedded
Target for TTI C6000 DSP target ti_C6000.t1lc and appear when you select any
TI C6000 target.

® TI C6000 code generation — target-specific code generation options.

® TI C6000 compiler/linker — target-specific compiler and linker options.
Also includes the target-specific run-time options.

2-83

2 Targeting C6000 DSP Hardware

When you select your target in Target Selection on the Real-Time
Workshop pane, the options change in the tree. For the Embedded Target for
TI C6000 DSP, the target to select is ti_c6000.tlc. Selecting either the

ti c6000.tlc or ti_c6000 ert.tlc adds the TI C6000-specific options to the
Select tree.

The following sections present each Real-Time Workshop category and the
options available in each.

2-84

Setting Real-Time Workshop Pane Options

Setting Real-Time Workshop Pane Options

Use the options in the Select tree under Real-Time Workshop to perform the
following configuration tasks.

® Determine your target, either C6000 or some other target if you are not using
the Embedded Target for TT C6000 DSP.

¢ Select your documentation needs.
¢ Configure your build process.
® Specify whether to use custom storage classes.

When you select the appropriate C6000 target (ti_c6000.tlc) in System
target file, you enable the automatic board selection for your model. After that,
opening the Configuration Parameters dialog box for your model triggers the
automatic board and processor selection tool, which searches for your

2-85

2 Targeting C6000 DSP Hardware

2-86

C6701 EVM. If MATLAB and CCS cannot find a board that matches the
C6701 EVM designation, you see an error message dialog box.

E! Configuration Parameters: c6701evmafxr/Configuration

Select

- Salver

- Data Import/Export

- Optimization
=-Diagnostics
--Sample Time
-Data Integrity

- Conversion
-Connectivity

i~ Compatibility
i-Madel Referenci...

- Model Referencing
EEReal-Time Workshop
- Comments
-Symbols

- Custom Code
-Debug

-Interface

- Templates
--Data Placement
-Data Type Repl...
- TIC6000 Code G...

- Hardware Implemen...

- TICB000 Compile...

— Target selection

System targetfile: Iti_cSDDD_e rtlc
fc

Browse... |

|

Language:
Description:

—Documentation
[~ Generate HTML report
[~ Include hyperlinks to maodel

™ Launch report after code generation completes

—Build proce

TLC options: I

Make command: Imal-ce_rtw

Template makefile: Iti_cSDDD_erttmf

—Custom storage class

™ Ignore custom storage classes

[~ Generate code only

Build |

DK I Cancel

Help

2

Apply |

Target Selection

System target file

Clicking Browse opens the Target File Browser where you select
ti c6000.t1lc as your Real-Time Workshop System target file for the
Embedded Target for TI C6000 DSP. When you select your target

configuration, Real-Time Workshop chooses the appropriate system target file,

template makefile, and make command. You can also enter the target

Setting Real-Time Workshop Pane Options

configuration filename, and Real-Time Workshop fills in the Template
makefile and Make command selections.

If you are using the Real-Time Workshop Embedded Coder software, select the
ti c6000 ert.tlc target in System target file.

Documentation

Generate HTML report

After you generate code, this option tells the software whether to generate an
HTML report that documents the C code generated from your model. When you
select this option, Real-Time Workshop writes the code generation report files
in the html subdirectory of the build directory. The top-level HTML report file
is named modelname codegen_rpt.html or
subsystemname_codegen_rpt.html. For more information about the report,
refer to the online help for Real-Time Workshop. You can also use

docsearch 'Generate HTML report'

at the MATLAB prompt to get more information.

When you select Include hyperlinks to model, your HTML report adds
hyperlinks to various features in your Simulink model. Hyperlinks within the
displayed report let you view the blocks or subsystems that generated the
report. Click the hyperlinks to view the relevant blocks or subsystems in your
Simulink model.

Launch report after code generation completes

Automatically opens a MATLAB Web browser window and displays the code
generation report. When you clear this option, you can open the code
generation report (modelname codegen rpt.html or
subsystemname_codegen_rpt.html) manually in a MATLAB Web browser
window or in another Web browser manually.

Build Process
Template makefile

Real-Time Workshop uses template makefiles to generate the makefile for
building the executable file. During the automatic build process, MATLAB

2-87

2 Targeting C6000 DSP Hardware

2-88

issues the make rtw command. make rtw extracts information from the
template makefile ti_c6000.tmf and creates the actual makefile c6000.mk.
When Real-Time Workshop compiles the model, it uses the actual makefile to
generate the compiled code for the target.

Set the Template makefile option to ti_c6000.tmf when you build your
application for the C6000 target. If the template makefile shown in the option
is not ti_c6000. tmf, click Browse to open the list of available system target
files and select the correct file from the list. Real-Time Workshop then selects
the appropriate template makefile.

Make command

When you generate code from your digital signal processing application, use
the standard command make_rtw as the Make command. In the Build process
area in the Target configuration category, enter make rtw for the Make
command. Parameters you set in this dialog box belong to the model you are
building. They are saved with the model and stored in the model file.

Custom Storage Class

When you generate code from a model employing custom storage classes (CSC),
make sure to clear Ignore custom storage classes. This setting is the default
value for the Embedded Target for TI C6000 DSP and for Real-Time Workshop
Embedded Coder.

When you select Ignore custom storage classes,

® Objects with CSCs are treated as if you set their storage class attribute to
Auto.

® The storage class of signals that have CSCs does not appear on the signal

line, even when you select Storage class from Format > Port/Signals
Display in your Simulink menus.

Ignore custom storage classes lets you switch to a target that does not
support CSCs, such as the generic real-time target (GRT), without having to
reconfigure your parameter and signal objects.

Generate code only

The Generate code only option does not apply to targeting with the Embedded
Target for TI C6000 DSP. To generate source code without building and

Setting Real-Time Workshop Pane Options

executing the code on your target, select TI C6000 runtime from the Category
list in the Select tree. Then, under Runtime, select Generate code only for
Build action. You cannot use DSP/BIOS features when you use the Generate
code only option for the Build action.

Debug Pane Options

Real-Time Workshop uses the Target Language Compiler (TLC) to generate C
code from the model.rtw file. The TLC debugger helps you identify
programming errors in your TLC code. Using the debugger, you can

® View the TLC call stack.
¢ Execute TLC code line-by-line and analyze and/or change variables in a

specified block scope.

When you select Debug from the Select tree, you see the Debug options as shown
in the next figure. In this dialog box, you set options that are specific to
Real-Time Workshop process and TLC debugging.

2-89

2 Targeting C6000 DSP Hardware

2-90

E! Configuration Parameters: c6701evmafxr/Configuration il

Select: |
- Solver

- Data Import/Export

- Optimization
E-Diagnostics

Compatibility

-Model Refarancing
- Hardware Implementation
-Model Referencing
=-Real-Time Workshop
- Comments

- Symbols

- Custom Code

-
- Interface

- Templates

- Data Placement

- Data Type Replace...

- TICB000 Code Gener...

- TICB000 Compiler/Lin...

—Build process
v Verbose build
[~ Retain .rtw file

—TLC process
[~ Profile TLC
[Start TLC debuggerwhen generating code

[Start TLC coverage when generating code
[~ Enable TLC assertion

QK I Cancel | Help | Apply |

For details about using the options in Debug, refer to the section “About TLC
Debugger” in your Real-Time Workshop documentation.

Optimization Pane Options

On the Optimization pane in the Configuration Parameters dialog box, you set
options for the code that Real-Time Workshop generates during the build
process. You use these options to tailor the generated code to your needs. Select
Optimization from the Select tree on the Configuration Parameters dialog
box. The figure shows the Optimization pane when you select the system
target file ti_C6000.t1lc under Real-Time Workshop system target file.

Setting Real-Time Workshop Pane Options

E! Configuration Parameters: c6711dskafxr/Configuration

Select:

- Saler

- Data Import/Export
- n
=-Diagnostics
-Sample Time
-Data Validity
“Type Conversion
-Connectivity
-Compatibility

tModel Referencing

- Hardware Implementation
- Model Referencing
=-Real-Time Warkshap

- Carnments

- Symbols

- Custom Code
--Debug

- |nterface

- Templates

- Data Flacement

- Data Type Replace...
-Memory Sections

- TICE000 Code Gene...
- TICE000 CampilerfLi...

x|

Simulation and code generation
™ Block reduction

I” Implement logic signals as boolean data (vs. double).

Jv Conditional input branch execution
v Signal storage reuse

Canfigure ... |

" Inline parameters

Application lifespan (days)linf

—Code generation

Farameter Strul:ture:l MonHierarchical

—Signals
¥ Enable local block outputs ¥ Reuse block outputs
™ Ignore integer downcasts in folded expressions I™ Inline irvariant signals

¥ Eliminate superfluous tempoarary variables (Expression folding)

Loop unrolling threshold: |2

—Datainitialization
[~ Remove rootlevel 10 zero initislization I” Use memsetto initialize floats and doubles to 0.0

[~ Remove internal state zera initialization ¥ Cptimize initialization code for model reference

r—Integer and fixec-point
[~ Remowve code from flosting-point to integer conversions that wraps out-of-range values

[~ Remowve code that protects against division arithmetic exceptions

ok I Cancel |

Help | Apply

These are the options typically selected for Real-Time Workshop:

® Conditional input branch execution

® Signal storage reuse

¢ Enable local block outputs

* Reuse block outputs

® Eliminate superfluous temporary variables (Expression folding)
® Loop unrolling threshold

¢ Optimize initialization code for model reference

For more information about using these and the other Optimization options,

refer to your Real-Time Workshop documentation.

2-91

2 Targeting C6000 DSP Hardware

2-92

TI C6000 Code Generation Pane Options

On the select tree, the TIC6000 Code Generation entry provides options in
these areas:

® Target Selection — Export a handle to your MATLAB workspace

¢ Code Generation — Configure your code generation requirements, such as
enabling DSP/BIOS

¢ Runtime — Set options for run-time operations, like the build action

Target Selection

When you use Real-Time Workshop to build a model to a C6000 target,
Embedded Target for TI C6000 DSP makes a link between MATLAB and CCS.
If you have used the link portion of the Embedded Target for TI C6000 DSP,
you are familiar with function ccsdsp, which creates links between the IDE
and MATLAB. This option refers to the same link, called cc in the function
reference pages. Although MATLAB to CCS is a link, what it really is a handle
to an object that contains information about the object, such as the target board
and processor it accesses. In this pane, the Export handle to MATLAB base
workspace option lets you instruct the Embedded Target for TI C6000 DSP to
export the link to your MATLAB workspace, giving it the name you assign in
CCS handle name.

Code Generation

From this category, you choose from options that define the way your code is
generated:

® Incorporate DSP/BIOS
® Profile performance at atomic subsystem boundaries
® Inline run-time library functions

® Use target-specific optimization for speed (allow LSB differences)

Incorporate DSP/BIOS determines whether the build process incorporates
DSP/BIOS features in your generated code. When you select Incorporate
DSP/BIOS, the build process inserts the DSP/BIOS options and files (the .cmd
file that contains DSP/BIOS configuration information) in the generated code.
The resulting code includes instrumentation based on DSP/BIOS objects.
“Introducing DSP/BIOS” on page 3-2 provides details about the changes that
occur in your generated code when you include DSP/BIOS.

Setting Real-Time Workshop Pane Options

If you are using the Generate code only build action option, you cannot use
DSP/BIOS features in your generated code—do not select the Incorporate
DSP/BIOS option here.

For profiling your generated code, the code generation options include the
Profile performance at atomic subsystem boundaries option. When your
model includes atomic subsystems, you can select this option to have
Embedded Target for TT C6000 DSP generate a run-time report about the way
your generated code performs when you run the code on your target. For more
information about using code profiling, refer to “Profiling Generated Code” on
page 3-10.

To allow you to specify whether the functions generated from blocks in your
model are used inline or by pointers, Inline run-time library functions tells
the compiler to inline each Signal Processing blockset and Video and Imaging
blockset function. Inlining functions can make your code run more efficiently
(better optimized) at the expense of using more memory. As shown in the
figure, the default setting uses inlining to optimize your generated code.

2-93

2 Targeting C6000 DSP Hardware

2-94

] configuration Parameters: c6701evmafxr/Configuration

Select

- Solver

- Data Import/Export

- Optimization

E--Diagnostics

i~ Sample Time

~Data Integrity

~Conversion

- Connectivity

- Compatibility
t.Model Referenci..

- Hardware Implemen...

- Model Referencing

2-Real-Time Workshop

- Comments

- Symbols

- Custom Code

- Debug

- Interface

- Templates

- Data Placement

- Data Type Repl...

= TIC6000 Code G...

- TIC6000 Compile...

— Target Selection

¥ Export CCS handle to MATLAE base workspace:

CCS handle name: |CCS_Obj

—Code Generation

[~ Incorporate DSP/BIOS
[T Profile performance at atomic subsystem boundaries
¥ Inline run-time library functions

[™ Use target specific optimization for speed (allow LSB differences)

—Runtime
Build action:l Build_and_execute j
averrun action:l Motify_and_halt j
Qverrun notification mel‘hod:l Turn_on_LEDs j
QK I Cancel I Apply

N

When you inline a block function, the compiler replaces each call to a block
function with the equivalent function code from the static run-time library. If
your model use the same block four times, your generated code contains four

copies of the function.

While this redundancy uses more memory, inline functions run more quickly

than calls to the functions outside the generated code.

The final option in this category is Use target-specific optimization for speed
(allow LSB differences), which determines whether Embedded Target for TI
C6000 DSP attempts to optimize the code generated from your model to make
it run more quickly on your selected target. This option might not make any

difference in some models.

Setting Real-Time Workshop Pane Options

Notice that selecting target-specific optimization allows your generated code to
differ from your simulation results in the least significant bit (LSB) for the
outputs of optimized blocks. You should review the results of the optimized and
simulation-true code to see that they are sufficiently close for your needs. For
many models, the LSB differences do not matter. Clearing this option results
in generated code whose results match your model simulation results.

The preferred way to use Use target-specific optimization for speed (allow
LSB differences) is to create your model, generate code from the model, and
run the code on your target with profiling enabled. After you have your model
and code running the way it should (generating the correct answers), try
selecting this option and regenerating your code. Run your new code with
profiling and compare the profile reports to see whether target-specific
optimization improved the performance.

Run-Time Options
Before you run your model as an executable on any C6000 target, you must
configure the run-time options for the model on the board.

By selecting values for the options available, you configure the operation of
your target.

Build action

To specify to Real-Time Workshop what to do when you click Build, select one
of the following options. The actions are cumulative—each listed action adds
features to the previous action on the list and includes all the previous
features:

® Generate_code_only — Directs Real-Time Workshop to generate C code
only from the model. It does not use the TI software tools, such as the
compiler and linker, and you do not need to have CCS installed. Also,
MATLAB does not create the handle to CCS that results from the other
options.

2-95

2 Targeting C6000 DSP Hardware

Note You cannot use Generate _code_only with DSP/BIOS enabled in your
project. To use the option of generating code without creating a project, or
using T1T tools, you must clear Incorporate DSP/BIOS in the TIC6000 code
generation options.

Generate_code_only creates a file named model.bat—an MS-DOS batch
file that contains the TI C6000 compiler command line (c16x) you use to
compile and link your generated code.

In this file you find information you need, such as the include paths, library
locations, and default compiler options to compile the code, and that are not
stored in any other file generated by the Generate code only build action.

Learn more about the batch file by reading the comments included in the file.

The build process for a model also generates the files modelname.c,
modelname.cmd, modelname.bld, and many others. It puts the files in a build
directory named modelname_c6000_rtwin your MATLAB working directory.
This file set contains many of the same files that Real-Time Workshop
generates to populate a CCS project when you choose Create CCS _Project
for the build action.

® Create_CCS_Project—Directs Real-Time Workshop to start CCS and
populate a new project with the files from the build process. This option
offers a convenient way to build projects in CCS.

® Archive CCS_Library—Directs Real-Time Workshop to archive the project
for this model. Use this option when you plan to use the model in a model
reference application. Model reference requires that you archive your CCS
projects for models that you use in model referencing.

® Build—DBuilds the executable COFF file, but does not download the file to
the target.

® Build_and_execute—Directs Real-Time Workshop to download and run
your generated code as an executable on your target.

Your selection for Build action determines what happens when you click
Build or press ctrl+B. Your selection tells Real-Time Workshop when to stop
the code generation and build process.

2-96

Setting Real-Time Workshop Pane Options

To run your model on the target, select Build and_execute. This selection is
the default build action; Real-Time Workshop automatically downloads and
runs the model on your target board.

Note When you build and execute a model on your target, the Real-Time
Workshop build process resets the target automatically. You do not need to
reset the board before building models.

Overrun action

To enable the overrun indicator, choose one of three ways for the target
processor to respond to an overrun condition in your model:

® None—Ignore overruns encountered while running the model.

® Notify_and_continue—When the DSP encounters an overrun condition, it
performs the operation you specify in Overrun notification method and
continues running the executable. If you use a C6711 DSK LED block in your
model, you cannot determine whether the C6711 DSK LED block enabled the
external LED or if an overrun condition caused the LED to light.

® Notify and_halt—Respond to overrun conditions by stopping program
execution and executing the Overrun notification method option you
select. If you use an LED block in your model, you cannot determine whether
the LED block enabled the external LED or user-defined LEDs, or if an
overrun condition caused the LEDs to light.

Overrun notification method

In combination with the Overrun action option, you choose how the Embedded
Target for TI C6000 DSP notifies you when your application goes into an
overrun state. From the Overrun notification method list, select one of the
following notification functions:

® Print_message—When your application overruns, and Overrun action is
Notify and_continue orNotify and_halt, the software prints a message to
the standard output or the message log (for DSP/BIOS enabled projects).

® Turn_on_LEDs—When your application overruns, and Overrun action is
Notify and_continue or Notify and_halt, the software turns on the user
LEDs on the C6711 DSK. Note that when you use an LED block in your

2-97

2 Targeting C6000 DSP Hardware

2-98

model, you might not be able to determine whether the LED block enabled
the external LED or user-defined LEDs, or an overrun condition caused the
LEDs to light. Other target boards might not provide LEDs and the LED
option does not apply.

® Print_message_and_turn_on_LEDs—In an overrun situation where you
have selected a notification action for Overrun action, the software prints
a message and turns on the LEDs. The same rules apply as for the individual
notification actions.

Overrun Indicator and Software-Based Timer
Embedded Target for TI C6000 DSP includes software that generates

interrupts in models that do not have ADC or DAC blocks, or that use multiple
clock rates. In the following cases, the overrun indicator does not work:

¢ In multirate systems where the rate in the model is not the same as the base
clock rate for your model. In such cases, the timer in the Embedded Target
for TI C6000 DSP provides the interrupts for setting the model rate.

® In models that do not include ADC or DAC blocks. In such cases, the timer
provides the software interrupts that drive model processing.

TI C6000 Compiler/Linker Options

Options in this category determine how the TI C6000 compiler generates
compiled code for the assembler and linker to use.

If you change the settings in this dialog box, your changes become part of the
build configuration options for your project in CCS. You can change these
settings in CCS later. In the dialog box, as presented in the figure, the controls
under TI C6000 compiler let you configure compiler operations.

Setting Real-Time Workshop Pane Options

E! Configuration Parameters: ¢6701evmafxr/Configuration il

Select:

- Solver

- Data Import/Export
- Optimization
E-Diagnostics
i-Sample Time
-Data Integrity
-Caonversion
-Connectivity
-Compatibility
Model Referanci...
-Hardware Implemen...
- Model Referencing
=-Real-Time Workshop
- Comments

- Symbols

- Custom Code
-Debug

-Interface

- Templates

-Data Placement
-Data Type Repl...
- TICB000 Code G...
& TIC6000 Compile...

—Compiler 1=
Memary model:l Near_Calls_and_Data j
Optimization level: I Function(-02) j
Compilerverbosity:l Quiet j

I~ Interrupt threshald (-mi):

Interrupt threshold value (cycles):l
[~ Symbolic debugging
[~ Retain asm files

—Linker

v Retain .objfiles
v Create map file

Stack size (bytes): [3192

Bl
QK I Cancel Help Apply |

Compiler Options

Memory model. You must specify how to map the memory for your processor
in Memory model. The list provides options that affect how the compiler
handles near and far calls and data, and aggregate data.

Your selections for the memory model options affect how the Embedded Target
for TT C6000 DSP handles near and far data. By default, the Embedded Target
for TT C6000 DSP, and the TT compiler, generate memory models that use both
near data calls and far data calls.

2-99

2 Targeting C6000 DSP Hardware

2-100

Accessing near data requires only one operation; far data access requires more
operations. As a consequence, programs and code that use far data sometimes
run more slowly. Refer to your CCS documentation for details about near data,
far data, aggregate data, and near and far accesses.

® Near_Data—Tells the compiler to allocate all data as near accesses.

® Far_Aggregate—Tells the compiler to allocate aggregate data, like arrays
and structures, as far accesses. Non-aggregate data (all data that is not
aggregate) default to near accesses. Structures, unions, C++ classes, and
arrays, which are aggregate data, are not accessed using the more efficient
data-page (DP) pointer. This is the default behavior and setting.

® Far_Data— Tells the compiler to allocate all data as far accesses.

When you select the Near_Data option, the Embedded Target for TTI C6000 DSP
specifies that only near calls are used to access static and global or extern data.
Near_Data represents the most efficient memory use. In CCS, the equivalent

setting is to choose Near (--mem model:data=near) for the Memory model
option in the build configuration.

If you select Near_Data, but your data or program requires far accesses, the TI
compiler returns an error message like the following in the CCS IDE

error: can't allocate '.far'

or
error: can't allocate '.text'
indicating that your data does not fit in internal memory or your code or

program does not fit in internal memory. The DP could not reach the specified
data using relative offset addressing.

To eliminate these errors, select Far_Data from the Memory model list.

Use the Far_Data selection when either or both of the following conditions are
true:

® Your static and external data do not fit within a 15-bit scaled offset from the
beginning of the .bss section of memory.

® You have calls in which the called function is more than + 1 Mword away
from the call site.

Setting Real-Time Workshop Pane Options

If your program meets the conditions noted and you select Near_Data for
Memory model, the TI linker issues the error message shown earlier.

When you declare a function or data as far, the compiler loads its address into
a register and then does an indirect load of that register (the -m1n option in
Memory models in the project build configuration in CCS). For more
information on the -m1ln option, refer to your CCS documentation.

You can avoid the allocation error by selecting Far_Data for the Memory
model option. This option prevents the compiler from using near calls, offering
you the ability to use all the available memory on your target. However, your
program might run more slowly than if you use the internal map option

Near Data, and your data and program fit into memory without needing far
calls for access.

The Far_Aggregate option allocates aggregate data as far calls and
non-aggregate data as near calls. This setting is the default for your projects in
Embedded Target for TI C6000 DSP. In CCS, the equivalent setting is

Far_aggregate in the Memory models option and represents the CCS default
setting as well.

To use near accesses for aggregate data, you must select the Near_Data setting
for Memory model.

Optimization level

To let you determine the degree of optimization provided by the TI optimizing
compiler, you select the optimization level to apply to files in your project. For
details about the compiler options, refer to your CCS documentation. When you
create new projects, the Embedded Target for TI C6000 DSP sets the
optimization to Function(-02).

Compiler verbosity

You can choose how much information the compiler returns while it runs.
Select from

® Verbose—Returns all compiler messages

® Quiet—Suppresses compiler progress messages

® Super Quiet—Suppresses all compiler messages

2-101

2 Targeting C6000 DSP Hardware

Interrupt threshold (-mi)

Interrupt threshold (-mi) enables an interrupt threshold that defines the
maximum number of cycles over which the compiler can disable interrupts.
You can use this option in various ways by setting combinations for Interrupt
threshold and Interrupt threshold value. The following table describes the
effects of the possible combinations

Interrupt Threshold InterruptThreshold Effect of the Option Settings

Option Value (Cycles)

Cleared Not Applicable (Default) Interrupts are explicitly disabled around
software pipelined loops. The remainder of the code
is interruptible.

Selected Empty Compiler assumes the code is never interrupted
during execution.

Selected 1 Compiler generates fully interruptible code.

Selected Integer = 2 or The compiler analyzes the code for each loop and

greater determines the maximum number of cycles

required to execute the loop.

¢ Jfthe maximum number of cycles is less than the
threshold value, the compiler generates the
optimal or fastest version of the loop.

¢ Ifthe maximum is larger than the threshold, the
compiler generates an interruptible loop that
still generates correct output. In most cases, an
interruptible loop is less efficient than an
optimized loop.

Using the Interrupt Threshold Option and Setting a Threshold Value

By default, Interrupt threshold is cleared and interrupts are explicitly
disabled around software pipelined loops. You can change this setting and
behavior to suit your application. Use these tips for deciding when and how to
use the threshold value options:

2-102

Setting Real-Time Workshop Pane Options

Profiling and the Threshold Option

If your program uses profiling, the threshold option can help you prevent
profiling errors. The profiling feature in Embedded Target for TI C6000 DSP
uses DSP/BIOS STS objects in CCS that in turn use the DSP/BIOS clock
manager to keep track of elapsed time. The clock manager interrupt, which
defaults to a 1 KHz rate, or 1 cycle/ms, is used to increment a counter.
Whenever the code disables interrupts, your program risks delaying the clock
manager interrupt operation and the STS timing operations. If interrupts are
disabled for 1 ms or longer, your profiling measurements will contain timing
errors.

Timing Errors

This profiling error condition can arise if you use the compiler optimization
level -02 or higher, because software pipelining causes interrupts to be disabled
during pipelined loops. Also, some C62x/C64x DSP library assembly routines
disable interrupts during execution.

If your profiling measurements are affected by this interaction, measured and
reported execution times might be shorter than the real execution times. To
resolve this issue, consider one of the following recommendations:

¢ Generate fully interruptible code by selecting the Interrupt threshold
option and entering 1 for the Interrupt threshold value. This selection
disables software pipelining and lowers the execution speed of your model. If
your model still runs without changing the desired sampling rate, this
method might be a good way to maintain your profiling.

® Avoid disabling interrupts for more than 1 ms. This precaution ensures that
the clock manager can always interrupt the code at 1 KHz (1 ms intervals).
You need to translate 1 ms to cycles to enter a threshold value. The value in
cycles varies depending on your CPU clock speed (value in cycles = 1/1000 x
CPU speed (in cycles/second)). Use the calculated cycles value to set the
Interrupt threshold value.

If your program uses -02 level compiler optimization (which is the default
optimization level), setting the threshold interrupt value can ensure that
critical interrupts happen as you expect. Using -02 optimization adds the
benefit of software pipelined loops around which interrupts are disabled.

Disabling interrupts could cause problems in the following cases:

2-103

2 Targeting C6000 DSP Hardware

2-104

® When your application has time-critical interrupts that must be serviced,

¢ In situations where preemption occurs, such as in multitasking, multirate
models

Consider the following techniques to resolve this problem.

® Generate fully interruptible code by selecting the Interrupt threshold
option and entering 1 for the Interrupt threshold value. Setting 1 as the
interrupt value prevents the compiler from disabling interrupts for more
than one cycle—essentially allowing any interrupt to occur.

¢ Select Interrupt threshold and set Interrupt threshold value to
something close to the base sampling time of your model. To determine the
recommended threshold value, use the base sampling time of your model and
the CPU clock speed as shown here because this value usually produces good
results with -02 optimization:

Interrupt threshold value < (0.8 x base sampling time x CPU clock speed).

For more information on using the Interrupt threshold (-mi) option, refer to
the documentation for the -mi compiler option provided in the online help for
CCS.

Interrupt threshold value (cycles)

Setting this option to a positive integer tells the compiler that uninterruptible
code sections cannot exceed the specified number of clock cycles in length.
When you enable the Interrupt threshold option, this option becomes active.
Although any integer is acceptable as a value, two have special significance:

® Value = 0. A 0 value (or empty) for Interrupt threshold value disables the
threshold and the compiler assumes the code is never interrupted.

e Value = 1. A 1 for the threshold value means the code is fully interruptible.
The clock/interrupt service can interrupt any code segment at any time.

Symbolic debugging

Selecting this option generates symbolic debugging directives that the C
source-level debugger uses, and enables assembly source debugging. By default
this option is selected—symbolic debugging is provided.

Setting Real-Time Workshop Pane Options

Retain .asm files

Select this option to direct Real-Time Workshop and the Embedded Target for
TI C6000 DSP to save your assembly language (.asm) files after creation. The
Embedded Target for TI C6000 DSP does not retain .asm files by default. If you
choose to keep the .asm files, Real-Time Workshop saves the files to your
current directory. When you create new projects, the Embedded Target for TI
C6000 DSP does not save your .asnm files unless you select this option.

Linker Options

You can configure the TTI C6000 linker to perform certain operations and use
specified files. The linker, not the compiler, defines the memory map used and
allocates code and data into memory on the target. Refer to Texas Instruments
TMS320C000 Optimizing C Compiler User’s Guide and to the online help in
CCS for more details about using memory maps on TI processors.

Retain .obj files

The linker uses object (.obj extension) files to generate a single executable
common object file format (COFF) file that you run on the C6711 DSK. Select
this option to direct Real-Time Workshop and the Embedded Target for TI
C6000 DSP to save your object (.obj) files after creation.

Real-Time Workshop saves the files to your current directory. Saving your . obj
files can speed up the compile process by not having to compile files that you
have not changed since you most recently compiled your project. Retaining the
.obj files is the default setting for new projects.

Create .map file

You can direct the linker to produce a map of the input and output sections,
including null areas, and place the listing in a file in your current directory
with the name modelname.map. When you clear this check box, the linker does
not produce the listing. New projects do not create the .map file.

Stack Size (Bytes)

You can enter any stack size in bytes, using decimal format. For more
information about the stack and block output, refer to Enable local block
outputs in the Code Generation options in the Optimization category in the
Select tree. Also refer to the online Help system for more information about

2-105

2 Targeting C6000 DSP Hardware

2-106

Real-Time Workshop options for configuring and building models and
generating code.

Embedded Target for TI C6000 DSP Default Project
Configuration — custom_MW

Although CCS offers two standard project configurations, Release and Debug,
models you build with the Embedded Target for TI C6000 DSP use a custom
configuration that provides a third combination of build and optimization
settings—custom_MW.

Project configurations define sets of project build options. When you specify the
build options at the project level, the options apply to all files in your project.
For more information about the build options, refer to your TI CCS
documentation.

The default settings for custom_MW are the same as the Release project
configuration in CCS, except for the compiler options discussed in the next
section. custom_ MW uses different compiler optimization levels to preserve
important features of the generated code.

Default Compiler Build Options in custom_MW

When you create a new project or build a model to your TT C6000 hardware,
your project and model inherit the build configuration settings from the
configuration custom_MW. The settings in custom_MW differ from the settings in
the default Release configuration in CCS in the compiler settings.

For the compiler options, custom_MW uses the Function(-02) compiler setting.
The CCS default Release configuration uses File(-03), a slightly more
aggressive optimization model.

For memory configuration, where Release uses the default memory model that
specifies near functions and data, custom_MW specifies near functions and
data—the -m11 memory model—because some custom hardware might not
support far data or aggregate data. Your CCS documentation provides
complete details on the compiler build options.

You can change the individual settings or the build configuration within CCS.
Build configuration options that do not appear on these panes default to match
the settings for the Release build configuration in CCS.

Model Reference and Embedded Target for TI C6000 DSP

Model Reference and Embedded Target for TI C6000 DSP

Model reference lets your model include other models as modular components.
This technique provides useful features because it:

¢ Simplifies working with large models by letting you build large models from
smaller ones, or even large ones.

¢ Lets you generate code once for all the modules in the entire model and only
regenerate code for modules that change.

® Lets you develop the modules independently.

® Lets you reuse modules and models by reference, rather than including the
model or module multiple times in your model. Also, multiple models can
refer to the same model or module.

Your Real-Time Workshop documentation provides much more information
about model reference.

How Model Reference Works

Model reference behaves differently in simulation and in code generation. For
this discussion, you need to know the following terms:

¢ Top model—The root model block or model. It refers to other blocks or
models. In the model hierarchy, this is the topmost model.

¢ Referenced models—Blocks or models that other models reference, such as
models the top model refers to. All models or blocks below the top model in
the hierarchy are reference models.

The following sections describe briefly how model reference works. More
details are available in your Real-Time Workshop documentation in the online
Help system.

Model Reference in Simulation

When you simulate the top model, Real-Time Workshop detects that your
model contains referenced models. Simulink generates code for the referenced
models and uses the generated code to build shared library files for updating
the model diagram and simulation. It also creates an executable (a dynamic
linked library, .d11) for each reference model that is used to simulate the top
model.

2-107

2 Targeting C6000 DSP Hardware

2-108

When you rebuild reference models for simulations or when you run or update
a simulation, Simulink rebuilds the model reference files. Whether reference
files or models are rebuilt depends on whether and how you change the models
and on the Rebuild options settings. You can access these setting through the
Model Reference pane of the Configuration Parameters dialog box.

Model Reference in Code Generation

Real-Time Workshop requires executables to generate code from models. If you
have not simulated your model at least once, Real-Time Workshop creates
a .d11 for simulation.

Now, for each referenced model, the code generation process calls make rtwand
builds each referenced model. This build process creates a library file for each
of the referenced models in your model.

After building all the referenced models, Real-Time Workshop calls make rtw
on the top model, linking to all the library files it created for the associated
referenced models.

Using Model Reference with Embedded Target for Tl
C6000 DSP

With few limitations or restrictions, Embedded Target for TTI C6000 DSP
provides full support for generating code from models that use model reference.

Build Action Setting

The most important requirement for using model reference with the TI targets
is that you must set the Build action (go to Configuration

Parameters >TIC6000 Code Generation) for all models referred to in the
simulation to Archive CCS Library.

To set the build action

1 Open your model.

2 Select Simulation >Configuration Parameters from the model menus.
The Configuration Parameters dialog box opens.

3 From the Select tree, choose TIC6000 Code Generation.

Model Reference and Embedded Target for TI C6000 DSP

4 In the right pane, under Runtime, set Build action to
Archive CCS_Library.

If your top model uses a reference model that does not have the build action set
to Archive CCS_Library, the build process automatically changes the build
action to Archive_CCS_Library and issues a warning about the change.

As a result of selecting the Archive CCS_Library setting, other options are
disabled:

* DSP/BIOS is disabled for all referenced models. Only the top model supports
DSP/BIOS operation.

® Overrun action, Overrun notification method, Exporting CCS object to
the workspace, and Stack size are all disabled for the referenced models.

Target Preferences Blocks in Reference Models

Each referenced model and the top model must include a Target Preferences
block for the correct target. You must configure all the Target Preferences
blocks for the same target.

To obtain information about which compiler to use and which archiver to use
to build the referenced models, the referenced models require Target
Preferences blocks. Without them, the compile and archive processes does not
work.

By design, model reference does not allow information to pass from the top
model to the referenced models. Referenced models must contain all the
necessary information, which the Target Preferences block in the model
provides.

Other Block Limitations

Model reference with Embedded Target for TI C6000 DSP does not allow you
to use certain blocks or S-functions in reference models:

® No blocks from the C62x DSP Library (in ¢c60001ib) (because these are
noninlined S-functions)

® No blocks from the C64x DSP Library (in ¢60001ib) (because these are
noninlined S-functions)

2-109

2 Targeting C6000 DSP Hardware

2-110

® No noninlined S-functions

® Nodriver blocks, such as the ADC or DAC blocks from any Embedded Target
for TT C6000 DSP library

Configuring Targets to Use Model Reference

Targets that you plan to use in Model Referencing must meet some general
requirements.

* A model reference compatible target must be derived from the ERT or GRT
targets.

® When you generate code from a model that references another model, you
need to configure both the top-level model and the referenced models for the
same code generation target.

¢ The External mode option is not supported in model reference Real-Time
Workshop target builds and Embedded Target for TI C6000 DSP does not
support External mode. If you select this option, it is ignored during code
generation.

® To support model reference builds, your TMF must support use of the shared
utilities directory, as described in Supporting Shared Utility Directories in
the Build Process.

To use an existing target, or a new target, with Model Reference, you set the
ModelReferenceCompliant flag for the target. For information on how to set
this option, refer to ModelReferenceCompliant in the online Help system.

If you start with a model that was created prior to version 2.4 (R14SP3), to
make your model compatible with the model reference target, use the following
command to set the ModelReferenceCompliant flag to On:

set_param(bdroot, 'ModelReferenceCompliant','on')
Models that you target with Embedded Target for TI C6000 DSP versions 2.4

and later automatically include the model reference capability. You do not need
to set the flag.

Targeting Supported Boards

Targeting Supported Boards

Texas Instruments markets a complete set of tools for you to use with the a
range of development boards, such as the C6711 DSK. These tools are
primarily intended for rapid prototyping of control systems and
hardware-in-the-loop applications. This section provides a brief example of
how to use TI development tools with Real-Time Workshop and the C6711 DSK
blocks.

Executing code generated from Real-Time Workshop on a particular target in
real time requires target-specific code. Target-specific code includes I/O device
drivers and an interrupt service routine. Other components, such as a
communication link with Simulink, are required if you need the ability to
download parameters on the fly to your target hardware.

Since these components are specific to particular hardware targets (in this
case, the C6711 DSK), you must ensure that the target-specific components are
compatible with the target hardware.

To allow you to build an executable, the Embedded Target for TI C6000 DSP
provides a target makefile specific to the evaluation module. This target
makefile invokes the optimizing compiler, provided as part of TI Code
Composer Studio.

Used in combination with Real-Time Workshop, TI products provide an
integrated development environment that, once installed, needs no additional
coding.

Typical Targeting Process

Generally, targeting hardware, or a development environment as some call it,
requires that you complete a series of processes that starts with building your
model and ends with generating code to suit your target.

1 Build the Simulink model of your algorithm or process to be converted to
code for your target.

2 Add target-specific blocks to your model, such as ADC and DAC blocks, and
configure the block parameters.

3 Add a target preferences block to your model. Select the block that best
matches your target—one of the device specific blocks, like C6711 DSK, or

2-111

2 Targeting C6000 DSP Hardware

2-112

the Custom C6000 block when none of the specific blocks is appropriate. All
models that you target to a C6000-processor-based hardware must have
a target preferences block at the top level of the model.

4 Configure the options on the target preferences block to select the target,
map memory segments, allocate sections to the memory segments, and
configure other target-specific options.

5 Set the configuration parameters for your model. Notice that you do this step
after you add the target preferences block to your model.

6 Build your model to your target.

Targeting the C6711 DSP Starter Kit

After you install the C6711 DSK development board and supporting TI

products on your PC, start MATLAB. At the MATLAB command prompt, enter
c6711dsklib. This opens a Simulink block library, c6711dsklib, that includes
a set of blocks for C6711 DSK I/O devices, as described in the following table.

Block Description

C6711 DSK ADC Configure the analog to digital converter

C6711 DSK DAC Configure the digital to analog converter

C6711 DSK LED Control the user status LEDs on the
C6711 DSK

C6711 DSK Reset Reset the processor on the C6711 DSK

These blocks are associated with your C6711 DSK board. As needed, add the
blocks to your model.

With your model open, select Simulation > Configuration Parameters. From
this dialog box, select Real-Time Workshop from the Select tree. You must
specify the appropriate versions of the system target file and template
makefile. For the C6711 DSK, in the Real-Time Workshop pane, specify

¢ Real-Time Workshop system target file—ti_c6000.tlc
®* Template makefile—ti c6000.tmf

Targeting Supported Boards

With this configuration, you can generate a real-time executable and download
it to the TI C6701 evaluation board. You generate the executable by clicking
Build on the Real-Time Workshop pane. The Real-Time Workshop
automatically generates C code and inserts the I/O device drivers as specified
in your block diagram. These device drivers are inserted in the generated C
code as inlined S-functions. Inlined S-functions offer speed advantages and
simplify the generated code. For more information about inlining S-functions,
refer to Target Language Compiler Reference documentation. For a complete
discussion of S-functions, refer to your Writing S-Functions documentation.

During the same build operation, the template makefile and block parameter
dialog box entries are combined to form the target makefile for your TI
evaluation module. This makefile invokes the TI compiler to build an
executable file. If you select the Build_and_execute option, Real-Time
Workshop automatically downloads the executable to the TI evaluation board
via the peripheral component interface (PCI) bus. After downloading the
executable file to the C6711 DSK, the build process runs the file on the
processor.

Starting and Stopping DSP Applications on the C6711 DSK

When you generate code, build the project, and download the code for your
Simulink model to your C6711 DSK, you are running actual machine code
corresponding to the block diagram you built in Simulink. To start running
your DSP application on the evaluation module, you must open your Simulink
model and rebuild the machine executable by clicking Build on the Real-Time
Workshop pane. To start the application on the C6711 DSK, you use
Real-Time Workshop to rebuild the executable from the Simulink model and
download the code to the board.

Your model runs until it encounters one of the following actions:

® You select Debug > Halt in CCS.
® You shut down the host PC.
¢ The process encounters a Stop block in the model code.

¢ The running application encounters an error condition that stops the
process.

Ifyou included a Reset C6711 DSK block in your model, clicking the block stops
the running application and restores the digital signal processor to its initial
state.

2-113

2 Targeting C6000 DSP Hardware

Note When you build and execute a model on the C6711 DSK, the Real-Time
Workshop build process resets the evaluation module automatically. You do
not need to reset the board before building models. Use the Reset C6711 DSK
block to stop processes that are running on the evaluation module, or to return
the board to a known state for any reason.

Configuring Your C6711 DSK

When you install the C6711 DSK, set the dual inline pin (DIP) switches as
shown in the following table. If you have installed the board with different
settings, reconfigure the board. Refer to your TMS320C6201/6701 Evaluation
Module User’s Guide for details.

DIP Switch Name Setting Effect

SW2-1 BOOTMODE4 On Boot mode setting

SW2-2 BOOTMODE3 On Boot mode setting

SWwW2-3 BOOTMODE2 Off Sets memory map = 1 when SW2-5 is off
SW2-4 BOOTMODE1 On Boot mode setting

SW2-5 BOOTMODEOQ Off Sets memory map =1 when SW2-3 is off
SW2-6 CLKMODE On Sets multiply-by-4 mode

SW2-7 CLKSEL On Selects oscillator A

SW2-8 ENDIAN On Selects little endian mode

SW2-9 JTAGSEL Off Selects internal Test Bus Controller (TBC)
SW2-10 USER2 On User-defined option

SW2-11 USER1 On User-defined option

SW2-12 USERO On User-defined option

2-114

Targeting Supported Boards

Confirming Your C6711 DSK Installation

Texas Instruments supplies a test utility to verify the operation of the board
and its associated software. For complete information about running the test
utility and interpreting the results, refer to your TMS320C6201/6711 DSP
Starter Kit User’s Guide.

To run the C6711 DSK verification test, complete the following steps after you
install your board:

1 Start CCS.

2 Select Start > Programs > Code Composer Studio > EVM Confidence
Test. As the test runs, the results appear on your display.

By default, the test utility does not create a log file to store the test results.
To specify the name and location of a log file to contain the results of the
confidence test, use the command line options in CCS to run the confidence
test utility. For further information about running the verification test from
a DOS window and using the command line options, refer to
TMS320C6201/6701 Evaluation Module User’s Guide.

3 Review the test results to verify that everything works. Check that the
options settings match the settings listed in the table above.

If your options settings do not match the configuration shown in the
preceding table, reconfigure your C6701 EVM. After you change your board
configuration, rerun the verification utility to check your new settings.

Testing Your C6711 DSK

The Embedded Target for TI C6000 DSP includes a Simulink demonstration
model called c6701evmtest. You can use this model to verify that you installed
your C6701 EVM hardware and your Embedded Target for TI C6000 DSP
software correctly and the board settings are suitable for targeting. The
demonstration model presets the Real-Time Workshop settings to build and
run the model on your board.

To run the model you need a signal generator, an oscilloscope, and audio cables
to connect the signal generator and scope to your C6701 EVM. Refer to the
Texas Instruments TMS320C6201/6701 Evaluation Module User’s Guide for
more information on connecting sources and scopes to your C6701 EVM. In

2-115

2 Targeting C6000 DSP Hardware

2-116

addition, connect your signal generator to the oscilloscope input so you can
display the source and output signals together.

To Confirm the Operation of Your C6711 DSK

As an initial test to determine that your Embedded Target for TI C6000 DSP
software and C6711 DSK are installed and operating correctly, open and build
the Simulink model c6711dsktest. See the model in the following figure.

Line In

C6701 EVM [——P»

X

Mod Source

ADC
Modulator
"ﬂg Reset

C6701 EVM

Line Out
C6701 EVM
DAC

Type Ctrl+B to build
and execute model
on C6701 EVM

1 Enter c6711dsktest at the MATLAB command prompt.

The model opens in Simulink.

2 Select Configuration Parameters from the Simulation menu.

The next figure shows the model c6711dsktest with the Configuration
Parameters option selected.

Targeting Supported Boards

[T]c6711dsktest _ =10l x|

File Edit Miew | Simulaktion Format Tools Help

B |Eq. (= gtzlrjt Chrl4-T INnrmaI j| &

v [ormal
Accelerator Line Out
5711 D5K
External

Cac
TESF

Sine Wawve

Wiodulator

Type CtikB 1o buikd
and exacute modeal
on CE7T11 DSK

Ca711 DSk

Shows the active configurat |[100% | | [FixedstepDiscrete o

3 On the Configuration Parameters dialog box, click Real-Time Workshop in
the Select tree to view the Real-Time Workshop pane.

4 Click Build to run the model. Building the model provides a comprehensive
test of the build, download, and run processes in the Embedded Target for
TI C6000 DSP.

A lengthy series of messages appears in the MATLAB Command Window,
starting with

Starting Real-Time Workshop build procedure for model:
c6711dsktest.mdl

2-117

2 Targeting C6000 DSP Hardware

2-118

Invoking Target Language Compiler on c6711dsktest.rtw

If c6711dsktest.mdl builds, compiles, and downloads to your C6711 DSK
successfully, the following message strings appear at the end of the build
process messages.

C6x EVM Command Line COFF Loader Utility, Version 1.20a
Copyright (c) 1998 by DNA Enterprises, Inc.

Found board type:DSK6x Revision:0

Using DSP memory map 1.

Downloaded:c6711dsktest.out

Successful completion of Real-Time Workshop build procedure
for model:c6711dsktest

When you receive this message, your model is running on the C6711 DSK. You
should be able to see the input and output on your oscilloscope. When you
change the input, the output should change as well.

Try increasing the frequency you send to your C6711 DSK and watch to see
that the output amplitude modulation changes to match.

Error Messages While Building C6711dsktest

If you receive an error message from the build and compile process, your board
or the software may not be configured correctly. Reinstall the board and review
the configurations listed in “Configuring Your C6711 DSK” on page 2-114. You
need to resolve errors that appear in this build before you start to develop and
build your own models.

Note that after you build and download the model to the board, the build
process runs the downloaded code on your C6711 DSK immediately.

Verifying That C6711dsktest Is Running

To see that the model is running, turn on your signal generator and set the
output to produce a sine wave at 8000 Hz. Connect your oscilloscope to display
both the input signal from the signal generator and the output from your
C6711 DSK.

On the oscilloscope display, you should see the sine wave input from the signal
generator, and the amplitude-modulated sine wave output from your C6711
DSK. If you change the frequency of the sine wave input, you should see the
change in the input and output traces on the oscilloscope.

Targeting Supported Boards

Starting and Stopping C6711dsktest on the C6711 DSK

When you build and download the model c6711dsktest.mdl to your C6711
DSK, you are not running a simulation of the model. You are running the
actual machine code, in real time, corresponding to the block diagram in
c6701evmtest.mdl. Torun c6701evmtest.mdl on the evaluation module, open
the Simulink model and click Build on the Real-Time Workshop pane.

Clicking Build rebuilds the machine executable and downloads the new

executable to your board. Building and downloading the new executable starts
the process running on your C6711 DSK. The Embedded Target for TI C6000
DSP offers a function, run, that restarts your loaded program on your target.

After your application is running on your target, use one of the following
methods to stop the process.

¢ Use the Debug > Halt function in CCS.

¢ Use halt entered at the MATLAB command prompt.

® Click the C6711 DSK Reset block in your model (if you added one) or in the
C6711 DSK board support library.

Creating Your Simulink Model for Targeting

You create real-time digital signal processing models the same way you create
other Simulink models—by combining standard DSP blocks and C-MEX
S-functions.

You add blocks to your model in several ways:

e Use blocks from the Signal Processing Blockset

® Use blocks from the fixed-point blocks library TI C62x DSPLIB or TI C64x
DSPLIB

e Use other Simulink discrete-time blocks

® Use the blocks provided in the C6000 blockset: ADC, DAC, LED and Reset
blocks for specific supported target hardware

® Use blocks that provide the functions you need from any blockset installed
on your computer

® Create and use custom blocks

Once you have designed and built your model, you generate C code and build
the real-time executable by clicking Build on the Real-Time Workshop pane

2-119

2 Targeting C6000 DSP Hardware

of the Configuration Parameters dialog box. The automatic build process
creates the file modelname.out containing a real-time model image in COFF file
format that can run on your target.

The file modelname.out is an executable whose format is target-specific. You
can load the file to your target and execute it in real time. Refer to your
Real-Time Workshop documentation for more information about the build
process.

Blocks to Avoid in Your Models

Many blocks in the blocksets communicate with your MATLAB workspace. All
blocks generate code, but they do not work in the generated code as they do on
your desktop.

You avoid using certain blocks, such as the Scope block and some source and
sink blocks, in Simulink models that you use on Embedded Target for TT C6000
DSP targets. These blocks waste time in the generated code waiting to send or
receive data from your MATLAB workspace, slowing your signal processing
application without adding instrumentation value.

The following table describes blocks you should rot use in your target models.

Block Library Description
Name/Category
Scope Simulink, Signal Provides oscilloscope view of

Processing Blockset your output. Do not use the
Save data to workspace
option on the Data history
pane in the Scope Parameters

dialog box.

To Workspace Simulink Return data to your MATLAB
workspace.

From Workspace Simulink Send data to your model from
your MATLAB workspace.

2-120

Targeting Supported Boards

Block
Name/Category

Library

Description

Spectrum Scope

To File

From File

Triggered to
Workspace

Signal To
Workspace

Signal From
Workspace

Triggered Signal
From Workspace

To Wave device
From Wave
device

To Wave file

From Wave file

Signal Processing
Blockset

Simulink

Simulink

Signal Processing
Blockset

Signal Processing
Blockset

Signal Processing
Blockset

Signal Processing
Blockset

Signal Processing
Blockset

Signal Processing
Blockset

Signal Processing
Blockset

Signal Processing
Blockset

Compute and display the
short-time FFT of a signal. It
has internal buffering that can
slow your process without
adding value.

Send data to a file on your host
machine.

Get data from a file on your
host machine.

Send data to your MATLAB
workspace.

Send a signal to your MATLAB
workspace.

Get a signal from your
MATLAB workspace.

Get a signal from your
MATLAB workspace.

Send data to a .wav device.
Get data from a .wav device.

Send data to a .wav file.

Get data from a .wav file.

In general, using blocks to add instrumentation to your application is

a valuable tool. In most cases, blocks you add to your model to display results

2-121

2 Targeting C6000 DSP Hardware

or create plots, such as Histogram blocks, add to your generated code without
affecting your running application.

When you need to send data to or receive data from your target, use the To Rtdx
and From Rtdx blocks to accomplish the data transfer.

2-122

Targeting Tutorial Il — A More Complex Application

Targeting Tutorial Il — A More Complex Application

For this tutorial, we demonstrate an application that uses multiple stages—
using wavelets to remove noise from a noisy signal. The model name is
c6711dskwdnoisf. As with any model file, you can run this denoising
demonstration by typing c6711dskwdnoisf at the MATLAB prompt. The model
also appears in the MATLAB demos collection in the Help browser—under
Simulink demos, in the Embedded Target for TI C6000 DSP category. Here is
a picture of the model as it appears in the demonstration library.

Wavelet De-noising Demo
C6711 DSK Implementation

Ca711D5K
= o In Outi | Dead Zone I =
Lin= In "1 | in2 Out2 > > | Line Out
| . -
C8711 DSK P o In2 Out2 > > S ™ CET;;ESK
e 2 | Ind Outd - - 3
ADC Analysis Soft Threshold Synthesi DA
- T o reshaol ynthesis
Filter Bank Delay Alignment Filter Bank
Type Chrl+B to build
and execute model Info Reset
on C&711 DSK. EE

Unlike the audio reverberation demo, this model is difficult to build from blocks
in Simulink. It uses complex subsystems for the Delay Alignment block and the
Soft Threshold block. For this tutorial you work with a copy of the
demonstration model, rather than creating the model.

This tutorial takes you through generating C code and building an executable
program from the demonstration model. The resulting program runs on your
C6711 DSK as an executable COFF file.

2-123

2 Targeting C6000 DSP Hardware

2-124

Working and Build Directories

It is convenient to work with a local copy of the c6711dskwdnoisf model, stored
in its own directory, which you named (something like c6711dnoisfex). This
discussion assumes that the c6701dnoisfex directory resides on drive d:. Use
a different drive letter if necessary for your machine. Set up your working
directory as follows:

1 Create the new model directory from the MATLAB command line by typing
Imkdir d:\c6701dnoisfex (on PC)

2 Make c6701dnoisfex your working directory in MATLAB.
cd d:/c6701dnoisfex

3 Open the c6711dskwdnoisf model.
c6711dskwdnoisf

The model appears in the Simulink window.

4 From the File menu, choose Save As. Save a copy of the c6711dskwdnoisf
model as d:/c6701dnoisfex/dnoisfrtw.mdl.

During code generation, Real-Time Workshop creates a build directory within
your working directory. The build directory name is model_target_rtw,
derived from the name of your source model and your chosen target. In the
build directory, Real-Time Workshop stores generated source code and other
files created during the build process. You examine the contents of the build
directory at the end of this tutorial.

Setting Simulation Program Parameters

To generate code correctly from the dnoisfrtw model, you must change some
of the configuration parameters. In particular, Real-Time Workshop uses

a fixed-step solver. To set the parameters, use the Configuration Parameters
dialog box as follows:

1 From the Simulation menu, choose Configuration Parameters. The
Configuration Parameters dialog box opens.

Targeting Tutorial Il — A More Complex Application

2 Click Solver and enter the following parameter values on the Solver pane.
Note that Embedded Target for TI C6000 DSP does not honor a stop time if
you set one here.

Start Time: 0.0
Stop Time: inf

Solver options: set Type to Fixed-step. Select the discrete solver
algorithm.

Fixed step size: auto
Tasking mode for periodic sample times: Auto
3 Click Apply, and then click OK to close the dialog box.

4 Save the model. Configuration parameters persist with the model (as the
model configuration set), for you to use in future sessions.

In the next figure you see the Solver pane with the correct parameter settings.

2-125

2 Targeting C6000 DSP Hardware

I Configuration Parameters: c6711dskwdnoisf/Configuration llil
| Simulation time
Start time: ID_D Stop time: |inf
- Data Import/E sport
D!:-tlrnlzat.lon —Solver options
[=- Diagnostics

- Sample Time Tupe: | Fined-step | Solver: | discrete [ho continuous states) |
- Data |nkegrity - ;)
... Conversion Periodic: zample time constraint: I Unconstrained ;I
Conneclh\.f!ly Fixed step size [fundamental sample time]: Iauto
- Compatibility
- Model Referenci... Tazking mode for periodic sample bimes: I Ak ;I

-~ Hardware Implement... ™ Higher priarity valus indicates higher task priority

- Model Referencing _

= RealTime Workshop [&utomatically handle data transfers between tasks
- Comments
- Sumbolz —
- Cgtomn Code
- Debug
- |nterface
- TI CRO00 target .. |
oK LCancel Help Apply

Selecting the Target Configuration
To specify the desired target configuration, you choose the

® System target file
® Template makefile
® make command

In these tutorials, you do not need to specify these parameters individually.
Instead, you use the ready-to-run ti_c6000.t1lc target configuration.

Note The Real-Time Workshop category has several subcategories, which
you select using the Select tree in the Configuration Parameters dialog box.
During this tutorial you change or review options in a few of the categories in
the tree.

2-126

Targeting Tutorial Il — A More Complex Application

E! Configuration Parameters: ¢6711dskwdnoisf/Configuration ll

Select:
- Solver
- Data Import/Export
- Optimization
- Diagnostics
Sample Time
Diata Integrity
Conversion
Connectivity
Compatibility

----- Model Referencing
- Hardware Implement...
- Model Referencing
EBReal-Time Workshop
- Comments
- Symbols
- Custom Code
-Debug
- Interface
- Templates
- Data Placement
- Data Type Repla...
- TICE000 Code G...
- TICE000 Compile...

To target your C6711 DSK:

1 From the Simulation menu, choose Configuration Parameters. The
Configuration Parameters dialog box opens.

2 Click Real-Time Workshop on the Select tree. The Real-Time Workshop
pane activates.

—Target selection

System target file: |ti_cBDDD_er1.tIc Browse... |

Language: |C j
Description:

—Documentation
[~ Generate HTML report
™ Include hyperlinks to model

[Launch report after code generation completes

—Build process

TLC options: I

Make command: Imake_r‘rw

Template makefile: Iti_cSDDD_erttmf

—Custom storage class

¥ Ignore custom storage classes

[~ Generate code only Build |

oK I Cancel | Help | Apply |

3 Click Browse next to the System target file field. This opens the System
Target File Browser. The browser displays a list of available target
configurations. When you select a target configuration, Real-Time

2-127

2 Targeting C6000 DSP Hardware

2-128

Workshop automatically chooses the appropriate system target file,
template makefile, and make command.

il System target file browser: c6711dskwdnoisf e |

System target file:

Lescription:

ert._tlec
ert.tle
ert_tlec
ert._tle
grt . tlc
gri . tlc
grt_malloc.tlc
grt_malloc.tlc

rsim.tle

rtwsfon.tlco

ti_c6000_ert.tle

tornado.tlc

4

BETW Emhedded Coder (no auto configuaration)
RETW Embedded Coder (auto configures for opt
ETW Ewmbedded Coder {(auto configures for opt
Wisual C/C++ Project Makefile only for the
Generic Real-Time Target

Visual C/C++ Project Makefile only for the
Generic Real-Time Target with dynawmic memor
Wisual C/C++ Project Makefile only for the
Bapid Simulation Target

S-function Target

Embhedded Target for TI C P (GRT)
Embedded Target for TI C&000 DSF (ERT)
Tornado (VxzWorks) Peal-Time Target

I 2|

Full nrame: D orl vAdzphmatlabboolbostrbe b argetshbic BO00N HCE000N_cE000 e

Ok I Cancel | Help Apply |

Template make file: b_cBO00.tmE
Make command: make_rtw

4 From the list of available configurations, select ti_c6000.t1lc, and click OK.

The Real-Time Workshop pane now displays the correct Real-Time
Workshop system target file (ti_c6000.t1lc), Template makefile
(ti_c6000.tmf), and Make command (make rtw).

5 To decide whether to export a CCS handle to your MATLAB work space
when you generate code, or run your model, select TI C6000 Code
Generation from the Select tree.

Targeting Tutorial Il — A More Complex Application

] configuration Parameters: c6701evmwdnoisf/Configuration

Select:

- Solver

- Data Impory/Export

- Optimization

=-Diagnostics

“Sample Time

Data Integrity

Conversion

Connectivity

Compatibility
“-Model Referencing

- Hardware Implement...

- Model Referencing

=-Real-Time Workshop

- Comments

--Symbols

- Custom Code

--Debug

- Interface

- Templates

- Data Placement

--Data Type Replac...

= | IC6000 Code Ge...

- TICB000 Compiler/...

—Target Selection

v Export CCS handle to MATLAE base workspace:

CCS handle name: [CCS_Obj

—Code Generation

¥ Incorporate DSP/BIOS
[~ Profile performance at atomic subsystem boundaries
¥ Inline run-time library functions

" Use target specific optimization for speed (allow LSB differences)

~Runtime

Build action: I Build_and_execute

overrun action: I MNotify_and_halt

Owerrun notification memod:l Turn_on_LEDs

0K I Cancel |

Apply |

6 To export the handle (a variable) that CCS creates when you generate code
from your model, select Export CCS handle to MATLAB workspace, and

enter a name for the handle in CCS handle name.

7 Select the Inline run-time library functions and the Incorporate

DSP/BIOS options, as shown in the previous figure.

8 Select Optimization from the Select tree. A new set of options appears. The
options displayed here are common to all target configurations. Make sure
that all options are set to their defaults, as shown in the following figure.

2-129

2 Targeting C6000 DSP Hardware

=] configuration Parameters: c6711dskwdnoisf/Configuration X|
Selact —Simulation and code generation A
- Soker ™ Block reduction v Conditional input branch exe
[~ Implement logic signals as boolean data {vs. double). ¥ Signal storage reuse
& Diagnostics ¥ Inline parameters ml
--Sample Time Application lifespan (days)lim‘
- Data Walidity
~Type Conversion ~Code generation
- Connectivi
; . ty Fararmetear structure:l MNonHierarchical
- Compatibility
- hodel Referen... - Signals
-Hardware Impleme... v Enahble local block outputs v Reuse hlock outputs
~Model Referencing [~ Ignore integer downcasts in folded expressions W Inline invariant signals

=-Feal-Time Worksh...
SrriearTime works ¥ Eliminate superluous tempaorary wvariables (Expressian folding)

- Corments

- Syrmbols Loop unrDIIingthreshDId:lE |2
- Custom Code

-Debug —Data initialization

- Inteface [~ FEemove rootlevel I/ zero initialization [~ Use memseat to initialize floats and doubles ©

- Templates

[~ Remove internal state zero initialization V¥ Optimize inttialization code for model refe

ren
--Data Placement i
1 | »

0] 4 I Cancel | Help | Apply |

9 Select Debug from the Select tree to access the Real-Time Workshop Process
and TLC process debugging options. Clear the check boxes on this pane.
Check Verbose build to see all the messages that Real-Time Workshop
issues while it generates your code or project. Selecting Verbose build is
optional, but can be useful when you are new to the code generation process

2-130

Targeting Tutorial Il — A More Complex Application

=] configuration Parameters: c6701evmwdnoisf/Configuration X|

Select

- Solver

- Data Import/Export

- Optimization
=-Diagnostics
iSample Time
Data Integrity
Conversion
Connectivity
Compatibility
Model Referencing
- Hardware Implement...
- Model Referencing
=-Real-Time Workshop
- Comments

- Symbols

- Custom Code

- Debug

- Interface

- Templates

- Data Placement

- Data Type Replac...
= 1 (C6000 Code Ge...
- TICE000 Compiler...

—Target Selection

¥ Export CCS handle to MATLAB base workspace:

CCS handle name: [CCS_Obj

—Code Generation
¥ Incorporate DSP/BIOS

™ Profile performance at atomic subsystem boundaries

¥ Inline run-time library functions

[~ Use target specific optimization for speed (allow LSB differences)

~Runtime
Build action:l Build_and_execute j
overrun action:l Motify_and_halt j
QOverrun notification meThod:I Turn_on_LEDs j

QK I Cancel | Help | Apply |

10 Select TI C6000 Compiler/Linker from the Select tree. The options
displayed on the new pane are specific to the C6000 target and TI compiler.
Check to make sure that the options are set as shown in the following figure.

2-131

2 Targeting C6000 DSP Hardware

E] Configuration Parameters: ¢6711dskwdnoisf/Configuration

Select: |

- Solver

- Data ImporyExport

- Optimization

[=-Diagnostics

: -Sample Time

-Data Integrity

-Canversion

-Connectivity

-Compatibility
~Model Referencing

- Hardware Implement...

- Model Referencing

=-Real-Time Workshop

- Comments

- Symbols

--Customn Code

--Debug

- Interface

- Templates

- Data Placement

--Data Type Repla...

- TICE000 Code G...

& 11C6000 Compile...

—Compiler

Memory model: I Far_Calls_and_Data

Optimization level: I Function{-02)

Compilerverbosity:l Quiet

™ Interruptthreshold (-mi):

Interrupt threshold value (cycles):l
[~ Symbolic debugging
[~ Retain .asm files

—Linker
¥ Retain objfiles
¥ Create .map file

Stack size (bytes): [3192

oK I Cancel Help Apply

11 Select TI C6000 Code Generation on the Select tree to access the C6000
run-time options. Set the run-time options as shown in the following figure.

2-132

Targeting Tutorial Il — A More Complex Application

] configuration Parameters: c6701evmwdnoisf/Configuration il

Select:

- Solver

- Data Impory/Export

- Optimization
=-Diagnostics
“Sample Time
Data Integrity
Conversion
Connectivity
Compatibility
“-Model Referencing

- Hardware Implement...
- Model Referencing
=-Real-Time Workshop
- Comments
--Symbols

- Custom Code
--Debug

- Interface

- Templates

--Diata Placement

--Data Type Replac...
= 1 [C6000 Code Ge...
- TICB000 Compiler/...

—Target Selection
v Export CCS handle to MATLAE base workspace:
CCS handle name: [CCS_Obj

—Code Generation
¥ Incorporate DSP/BIOS
[~ Profile performance at atomic subsystem boundaries
¥ Inline run-time library functions

" Use target specific optimization for speed (allow LSB differences)

—Runtime
Build acﬁon:l Build_and_execute j
oVerrun action:l MNotify_and_halt j
Owerrun notification memod:l Turn_on_LEDs j

0K I Cancel | Help | Apply |

12 Click OK to close the Configuration Parameters dialog box. Save the model
to retain your new build settings.

Building and Running the Program

The Real-Time Workshop build process generates C code from your model, and
then compiles and links the generated program.

To build and run your program:

1 Access the Configuration Parameters dialog box for your model.

2-133

2 Targeting C6000 DSP Hardware

2 Clear Generate code only and click Build in the Real-Time Workshop pane
to start the build process.

3 A number of messages concerning code generation and compilation appear
in the MATLAB Command Window. The initial messages are

Starting Real-Time Workshop build procedure for model:
dnoisfrtw
Generating code into build directory: .\dnoisfrtw_c6000 rtw

The content of the succeeding messages depends on your compiler and
operating system.The final message is

Successful completion of Real-Time Workshop build procedure
for model: dnoisfrtw

4 The working directory now contains an executable, dnoisfrtw.exe. In
addition, Real-Time Workshop created a build directory,
dnoisfrtw_c6000_rtw.

To review the contents of the working directory after the build, type the dir
command from the MATLAB Command Window.
dir
dnoisfrtw.exe dnoisfrtw_c6000_rtw
dnoisfrtw.mdl

5 To run the executable from the MATLAB Command Window, type

ldnoisfrtw

The “!” character passes the command that follows it to the operating
system, which runs the stand-alone dnoisfrtw program.

The program produces one line of output.

starting the model

6 To see the contents of the build directory, type

dir dnoisfrtw_c6701_rtw

2-134

Targeting Tutorial Il — A More Complex Application

Contents of the Build Directory

The build process creates a build directory and names it model target_rtw,
concatenating the name of your source model and your chosen target. In this
example, your build directory is named dnoisfrtw_c6701_rtw.

dnoisfrtw_c6701_rtw contains these generated source code files:

® dnoisfrtw.c—The stand-alone C code that implements the model.

® dnoisfrtw.h—An include header file containing information about the state
variables

® dnoisfrtw_export.h—An include header file containing information about
exported signals and parameters

The build directory also contains other files used in the build process, such as
the object (.obj) files and the generated makefile (dnoisfrtw.mk).

2-135

2 Targeting C6000 DSP Hardware

Targeting Your C6711 DSK and Other Hardware

2-136

The Embedded Target for TI C6000 DSP for Texas Instruments DSP lets you
use Real-Time Workshop to generate, target, and execute Simulink models on
the Texas Instruments (TT) C6711 DSP Starter Kit (C6711 DSK). In
combination with the C6711 DSK, your Embedded Target for TI C6000 DSP
software is the ideal resource for rapidly prototyping and developing embedded
systems applications for the TI C6711 Digital Signal Processor. The Embedded
Target for TI C6000 DSP software focuses on developing real-time digital
signal processing (DSP) applications for the C6711 DSK.

This chapter describes how to use the Embedded Target for TI C6000 DSP to
create and execute applications on the C6711 DSK. To use the targeting
software, you should be familiar with using Simulink to create models and with
the basic concepts of Real-time Workshop automatic code generation. To read
more about Real-Time Workshop, refer to your Real-Time Workshop
documentation.

In this chapter, you will find sections that detail how to use your Embedded
Target for TI C6000 DSP to build and download DSP applications in Simulink
to your C6711 DSK and to Texas Instruments Code Composer Studio (CCS):

® Configuring your Embedded Target for TI C6000 DSP software, in “Setting
Real-Time Workshop Options for C6000 Hardware” on page 2-82

¢ Configuring your Texas Instruments TMS320C6711 DSP Starter Kit, in
“Configuring Your C6711 DSK” on page 2-136

® Testing your hardware and software installation to be sure everything
works, in “Confirming Your C6711 DSK Installation” on page 2-136 and
“Testing Your C6711 DSK” on page 2-137

Configuring Your C6711 DSK

After you install and configure your C6711 DSK according to the instructions
in the online help for CCS, you do not need to configure further your
C6711 DSK.

Confirming Your C6711 DSK Installation

Texas Instruments supplies a test utility to verify operation of the board and
its associated software. For complete information about running the test utility

Targeting Your C6711 DSK and Other Hardware

and interpreting the results, refer to your “TMS320CDSK Help” under
TMS320C6000 Code Composer Studio Help in the CCS online help system.

To run the C6711 DSK confidence test, complete the following steps after you
install and configure your board.

1 Open a DOS command window.
2 Access the directory \..\ti\c6000\dsk6x11\conftest

CCS creates this directory when you install your CCS software. It contains
the files to run the C6711 confidence test.

3 Start the confidence test by typing dskéxtst at the DOS prompt.

By default, the test utility creates a log file named dsk6xtst.log where it
stores the test results. To specify the name and location of a log file to
contain the results of the confidence test, use the CCS command line options
to run the confidence utility. For further information about running the
confidence test from a DOS window and using the command line options,
refer to the “DSK Confidence Test” topic in the online help for CCS.

4 Review the test results to verify that everything works.

If your confidence test fails, reconfigure your C6711 DSK. After you change
your board configuration, rerun the confidence utility to check your new
settings.

Testing Your C6711 DSK

The Embedded Target for TI C6000 DSP includes a Simulink demonstration
model called c6711dsktest. You can use this model to verify that you installed
your C6711 DSK hardware and your Embedded Target for TI C6000 DSP
software correctly and the board settings are suitable for targeting. The
demonstration model presets the Real-Time Workshop settings to build and
run the model on your board.

To run the model you need a signal generator, an oscilloscope, and audio cables
to connect the signal generator and scope to your C6711 DSK. Refer to your
CCS documentation for more information on connecting sources and scopes to
your C6711 DSK. In addition, you should connect your signal generator to the
oscilloscope input so you can display the source and output signals together.

2-137

2 Targeting C6000 DSP Hardware

To Test the Operation of Your C6711 DSK

As a test to verify that your Embedded Target for TT C6000 DSP software and
C6711 DSK are installed and operating correctly, open and build the Simulink
model c6711dsktest. Test model c6711dsktest appears in the following

figure.
Line In
C6711 DSK > Line Out
ADC — > X |— | c6711DSK
DAC
Modulator

|I_|—|_IDSF

| L|_r| Type Ctrl+B to build
and execute model
on C6711 DSK

Sine Wave

Reset
C6711 DSK

1 Enter c6711dsktest at the MATLAB command prompt.
Test model c6711dsktest opens in Simulink.
2 Select Simulation > Configuration Parameters from the menu bar.

The next figure shows the model c6711dsktest with Configuration
Parameters selected.

2-138

Targeting Your C6711 DSK and Other Hardware

[Clce711dsktest =10] %]
File Edit Miew | Simulation Format Tools Help

b |Eq. = gtz:: Chrl4+T IN::urmaI j| %

Configuration Parameters,.. Chrl+E

v Mormal

Accelerator Line Cut
5711 DSK

Dac

External

e

Sine Wawe

Modulator

Type Cirk-B fo build
and executs modal
on Ce711 DSK

Cav11 DEK

Show the active configurat [100% | | |FixedstepDiscrete y

3 Click Real-Time Workshop in the Select tree on the Configuration
Parameters dialog box to view the Real-Time Workshop options.

4 C(Click Build to run the model. Building the model provides a comprehensive
test of the build, download, and run processes in the Embedded Target for
TI C6000 DSP.

Real-Time Workshop returns a lengthy series of messages in the Command
Window, starting with

Starting Real-Time Workshop build procedure for model:
c6711dsktest.mdl
Invoking Target Language Compiler on c6711dsktest.rtw

If c6711dsktest.mdl builds, compiles, and downloads to the C6711 DSK
successfully, the following message strings appear at the end of the build
process messages.

2-139

2 Targeting C6000 DSP Hardware

2-140

C6x DSK Command Line COFF Loader Utility, Version 1.20a
Copyright (c) 1998 by DNA Enterprises, Inc.

Found board type:DSK6x Revision:0

Using DSP memory map 1.

Downloaded:c6711dsktest.out

Successful completion of Real-Time Workshop build procedure
for model:c6711dsktest

When you receive this message, your model is running on the C6711 DSK. You
should be able to see the input and output on your oscilloscope. When you
change the input, the output should change as well.

Try increasing the frequency you send to the C6711 DSK and watching to see
that the output changes to match by changing the amplitude modulation.

Error Messages While Building ¢6711dsktest

If you receive an error message from the build and compile process, your board
or the software may not be configured correctly. Reinstall the board and review
the configurations listed in section “Configuring Your C6711 DSK” on

page 2-136. You need to resolve errors that appear in this build before you start
to develop and build your own models.

Note that after you build and download the model to the board, the build
process runs the downloaded code on the C6711 DSK immediately.

Verifying That ¢6711dsktest Is Running

To see that the model is running, turn on your signal generator and set the
output to produce a sine wave at 8000 Hz. Set your oscilloscope to display both
the input signal from the signal generator and the output from the C6711 DSK.
On the oscilloscope display, you should see the sine wave input from the signal
generator, and the amplitude-modulated sine wave output from the C6711
DSK. If you change the frequency of the sine wave input, you should see the
change on the oscilloscope in the input and output traces.

Starting and Stopping ¢67 1 1dsktest on the C6711 DSK

When you build and download the model c6711dsktest.mdl to your

C6711 DSK, you are not running a simulation of the model. You are running
the actual machine code, in real time, corresponding to the block diagram in
c6711dsktest.mdl. To run c6711dsktest.mdl on your C6711 DSK, open the
Simulink model and click Build on the Real-Time Workshop pane to rebuild

Targeting Your C6711 DSK and Other Hardware

the machine executable and download the new executable to the board.
Building and downloading the new executable starts the process running on
the C6711 DSK.

Once your application is running on your target, stop the process by one of the
following methods:

¢ Using the Debug > Halt option in CCS.
¢ Using halt from the MATLAB command prompt.

¢ Clicking the C6711 DSK Reset block in your model (if you added one) or in
the C6711 DSK Board Support library.

Running Models on Your C6711 DSK

Texas Instruments markets a complete set of tools for use with the C6711 DSK.
These tools are primarily intended for rapid prototyping of control systems and
hardware-in-the-loop applications.

This section provides a brief example of how the TI development tools work
with Real-Time Workshop, the Embedded Target for TI C6000 DSP, and the
C6711 DSK Board Support block library.

Executing code generated from Real-Time Workshop on a particular target in
real-time requires target-specific code. Target-specific code includes I/O device
drivers and an interrupt service routine.

Other components, such as a communication link with Simulink, are required
if you need the ability to download parameters on-the-fly to your target
hardware.

Since these components are specific to particular hardware targets (in this
case, the C6711 DSK), you must ensure that the target-specific components are
compatible with the target hardware.

To allow you to build an executable, the Embedded Target for TI C6000 DSP
provides a target makefile specific to C6000 hardware targets. This target
makefile invokes the optimizing compiler provided as part of CCS.

Used in combination with the Embedded Target for TI C6000 DSP and
Real-Time Workshop, TI products provide an integrated development
environment that, once installed, needs no additional coding.

2-141

2 Targeting C6000 DSP Hardware

2-142

After you have installed the C6711 DSK development board and supporting TI
products on your PC, start MATLAB. At the MATLAB command prompt, type
c6711dsklib. This opens a Simulink block library, ¢6711dsklib, that includes
a set of blocks for C6711 DSK I/O devices:

® C6711 DSK ADC—Configures the analog to digital converter
® C6711 DSK DAC—Configures the digital to analog converter

® C6711 DSK LED—Controls the user-defined light emitting diodes (LED) on
the C6711 DSK

® C6711 DSK DIP Switch—Sets the dual inline pin switches on the C6711
DSK

® C6711 EVM Reset—Resets the processor on the C6711 DSK
These devices are associated with your C6711 DSK board.

With your model open, select Simulation > Configuration Parameters from
the menu bar to open the Configuration Parameters dialog box.

From this dialog box, click Real-Time Workshop on the select tree. You must
specify the appropriate versions of the system target file and template
makefile. For the C6711 DSK, in the Real-Time Workshop pane of the dialog
box, specify

® System target file—ti c6000.tlc
* Template makefile—ti_c6000. tmf

With this configuration, you can generate and download a real-time executable
to your TI C6711 DSK. Start the Real-Time Workshop build process by clicking
Build on the Real-Time Workshop pane. Real-Time Workshop automatically
generates C code and inserts the I/0O device drivers as specified by the ADC and
DAC blocks in your block model.

These device drivers are inserted in the generated C code as inlined
S-functions. Inlined S-functions offer speed advantages and simplify the
generated code. For more information about inlining S-functions, refer to your
Target Language Compiler documentation. For a complete discussion of
S-functions, refer to your documentation about writing S-functions.

During the same build operation, the template makefile and block parameter
dialog box entries are combined to form the target makefile for your TI

Targeting Your C6711 DSK and Other Hardware

evaluation module. This makefile invokes the TI compiler to build an
executable file.

Ifyou select the Build _and_execute option, the executable file is automatically
downloaded via the peripheral component interface (PCI) bus to the TI
evaluation board. After downloading the executable file to the C6711 DSK, the
build process runs the file on the digital signal processor.

Starting and Stopping DSP Applications on the C6711 DSK

When you create, build, and download a Simulink model to the C6711 DSK,
you are not running a simulation of your DSP application. You are running the
actual machine code corresponding to the block diagram you built in Simulink.
To start running your DSP application on the evaluation module, you must
open your Simulink model and rebuild the machine executable by clicking
Build on the Real-Time Workshop pane. Each time you want to start the
application on the C6711 DSK, you use Real-Time Workshop to rebuild the
executable from the Simulink model and download the code to the board.

Your model runs until the model encounters one of the following actions:

¢ Using the Debug > Halt option in CCS
® Using halt from the MATLAB command prompt
¢ Encountering a Stop block in the model.

¢ Clicking the C6711 DSK Reset block in your model (if you added one) or in
the DSK block library

Clicking the Reset block stops the running application and restores the digital
signal processor to its initial state.

Note When you build and execute a model on your C6711 DSK, the
Real-Time Workshop build process resets the DSK automatically. You do not
need to reset the board before building models. Use the C6711 DSK Reset
block to stop processes that are running on your C6711 DSK, or to return your
board to a known state for any reason.

2-143

2 Targeting C6000 DSP Hardware

Creating Code Composer Studio Projects Without Building

2-144

Rather than targeting your C6000 board when you build your signal processing
application, you can create Texas Instruments Code Composer Studio (CCS)
projects. Creating projects for CCS lets you use the tools provided by the CCS
software suite to debug your real-time process.

If you build and download your Simulink model to CCS, the Embedded Target
for TI C6000 DSP opens Code Composer Studio, creates a new CCS project
named for your model, and populates the new project with all the files it creates
during the build process—the object code files, the assembly language files, the
map files, and any other necessary files. As a result, you can immediately use
CCS to debug your model using the features provided by CCS.

Creating a project in CCS is the same as targeting C6000 hardware. You
configure your target options, select your build action to create a CCS project,
and then build the project in CCS by clicking Make Project.

Creating Projects in CCS Without Loading Files to Your Target

From the Select tree in the Configuration Parameters dialog box, select TI
C6000 Code Generation. Select Create CCS _Project for the Build action, as
shown in the next figure. Note that the Build and Build _and_execute options
create CCS projects as well. The Generate code_only option does not create a
CCS project. None of the other options has an effect here. Ignore them when
you are creating a project in CCS rather than generating code.

Creating Code Composer Studio Projects Without Building

E] Configuration Parameters: c6711dskwdnoisf/Configuration

Select

- Solver

- Diata Import/Export

- Optimization
E-Diagnostics

-Sample Time
~Data Integrity
~Conversion
~Connectivity
~Compatibility
i~Model Referencing
- Hardware Implement..
-Maodel Referencing
=-Real-Time Workshop
- Comments

- Symbols

- Custom Code
-Debug

- Interface

- Templates

- Data Placement

--Data Type Repla...
= 11C6000 Code G...
- TICB000 Compile...

—Target Selection

¥ Export CCS handle to MATLAB base workspace:

CCS handle name: [CCS_Obj

—Code Generation

¥ Incorporate DSP/BIOS
[Profile performance at atomic subsystem boundaries
¥ Inline run-ime library functions

[™ Use target specific optimization for speed (allow LSB differances)

—Runtime

Build action: I Create_CCS_Project

overrun action: | Motify_and_continue

Qverrun notification method: | Turn_on_LEDs

Lef L] Lo

0K I Cancel |

Apply |

After you select Create_CCS_Project, set the options for the Compiler and
Linker categories on the TI C6000 Compiler/Linker category on the Select

tree.

Return to the Real-Time Workshop category, clear Generate code only and

click Build to build your new CCS project.

Real-Time Workshop and the Embedded Target for TI C6000 DSP generate all
the files for your project in CCS and create a new project in the IDE. Your new
project is named for the model you built, with a custom project build

configuration custom_MW, not Release or Debug.

In CCS you see your project with the files in place in the directory tree.

2-145

2 Targeting C6000 DSP Hardware

Targeting Custom Hardware

2-146

Aslong as the processor on your custom board is from the TT C6000 DSP family,
you can use Embedded Target for TI C6000 DSP to generate code for your
target.

Note that the blocks for the peripherals in the C6000 DSP Library, such as the
C6416 DSK ADC or C6711 DSK DAC blocks, are specific to their hardware and
will not work with your custom board. None of the board-specific blocks
provided by this toolbox work with custom hardware. However, the RTDX and
core support blocks should work for standard processors.

Custom hardware targeting currently supports all C6000 processors through
target preferences blocks, either specific to the processor, or a general custom
preferences block. These target preferences blocks are described briefly in the
following table

Target Preferences Block Description

Custom C6000 Provides access to the hardware set up for
targeting any C6000 processor-based board.
Note that it does not set any default values.
When you add this block to a model, you must
set all the options on each available pane—
board information, memory mapping, and
section layout.

C6416DSK Sets default values for targeting the C6416
DSK. After you add this block to your model,
you can modify the default values as you
require. Parameters in this block are set to
match the board attributes.

C6455DSK Sets default values for targeting the C6455
DSK. After you add this block to your model,
you can modify the default values as you
require. Parameters in this block are set to
match the board attributes.

Targeting Custom Hardware

Target Preferences Block Description

C6711DSK Sets default values for targeting the C6711
DSK. After you add this block to your model,
you can modify the default values as you
require. Parameters in this block are set to
match the board attributes.

C6713DSK Sets default values for targeting the C6713
DSK. After you add this block to your model,
you can modify the default values as you
require. Parameters in this block are set to
match the board attributes.

C6727DSK Sets default values for targeting the C6727
DSK. After you add this block to your model,
you can modify the default values as you
require. Parameters in this block are set to
match the board attributes.

DM642EVM Sets default values for targeting the DM642
EVM. After you add this block to your model,
you can modify the default values as you
require. Parameters in this block are set to
match the board attributes.

These target preferences blocks provide a direct way for you to target boards
that are not specifically supported. Due to certain features related to memory

maps and other processor-specific attributes, custom hardware targeting only
works with the C6000 DSPs.

Several guidelines affect your targeting configuration decisions when you
decide to use custom targets and the custom target preferences block:

1 Specify the memory allocation (memory mapping) using the Memory and
Sections panes on the C6000 Target Preferences dialog box. Set the memory
mapping for your target that best matches your hardware. For example, if
your custom target uses the C6713 processor, be sure your memory
configuration is the same as the one on the supported C6713 DSK, such as

2-147

2 Targeting C6000 DSP Hardware

2-148

has the same memory size, the same EMF settings, the same memory
sections, and the same cache organization.

To use on-chip memory only for your target, choose the Near _Calls setting
for the Memory model in the TI C6000 compiler options. To use external
memory that is specific to your board, choose the Far_Calls setting for the
Memory model. The other selection in the Memory model list offers a
combination of near and far allocation for data and aggregate data.

Do not use the existing ADC, DAC, DIP Switch, or LED blocks unless you
are quite sure that your hardware is identical to the appropriate EVM or
DSK in all important respects. Generally, the ADC, DAC, and other
target-specific blocks are design specifically for their designated targets and
can cause problems when you use them on hardware that is not identical.

Set the Overrun notification method in the TI C6000 runtime category to
Print_message when you use the overrun notification feature. If you choose
to use the LED notification option, verify that on your specialized target you
access the LEDs in exactly the same way, and the LEDs respond in the same
way, as the LEDs on the corresponding supported DSK or EVM.

To use one of the custom targets, create your model, add and configure the
Custom C6000 target preferences block, and then open the Configuration
Parameters dialog box for the model.

Typical Targeting Process

Generally, targeting hardware, or a development environment as it is called by
some, requires that you complete a series of processes that starts with building
your model and ends with generating code to suit your target.

Build the Simulink model of your algorithm or process to be converted to
code for your target.

Add target-specific blocks to your model, such as ADC and DAC blocks, and
configure the block parameters. (Skip this step when you are targeting a
processor on a custom board.)

Add a target preferences block to your model. Select the block that best
matches your target: one of the device-specific blocks, like C6711DSK or the

Targeting Custom Hardware

Custom C6000 block when none of the specific blocks is appropriate. All
models that you target to C6000-processor-based must have a target
preferences block at the top level of the model.

4 Configure the options on the target preferences block to select the target,
map memory segments, allocate code and data sections to the memory
segments, and set other target-specific options.

5 Set the Simulink configuration parameters for your model. Notice that you
do this after you add the target preferences block to your model.

6 Build your model to your target.

Memory Maps

Memory maps are an essential part of targeting any processor or board.
Without the map, the code generation process cannot determine where various
features of the generated code, such as variables, data, and executable code,
reside on the target.

To discuss memory maps and configuring memory, a few terms need to be
defined:

® Memory map—Map of the memory space for a target system. The memory
space is partitioned into functional blocks.

* memory segment—Memory partition that corresponds to a physical range of
memory on the target. The segment is named in some fashion, such as
IPRAM or SDRAM.

® Memory section—The smallest unit of an object file. This is a block of data or
code that, based on the memory map, resides in an area of contiguous
memory on the target and in the memory map. Sections of object files are
both distinct and separate. Memory sections come in two flavors:

= Uninitialized sections that reserve memory space for uninitialized data.
One example of an uninitialized section is .bss. The .bss section reserves
space for variables that are not initialized.

= Initialized sections contain code and data. The .text (containing
executable code) and .data (containing initialized data) sections are
initialized.

2-149

2 Targeting C6000 DSP Hardware

2-150

® Memory management—Process of specifying the memory segments that the
various memory sections use for your application. A logical memory map of
the hardware memory results from the process of managing memory.

During code generation, the linker and assembler work to allocate your code
and data into the memory on your target according to the memory map
specifications you provide. For more information about memory utilization and
memory management, refer to the online help for CCS, using keywords like
memory map, memory segment, and section.

Note that the compiler does not interact with the memory map. It makes no
assumptions about memory allocation and is not aware of the memory map. As
far as the C6000 compiler is concerned, the physical memory on your target is
one continuous linear block of memory that is subdivided into smaller blocks
containing code, data, or both.

When you configure the block parameters for the Custom C6000 target
preferences block, you are setting up the memory map for your target. You
specify the memory segments that are defined and the contents of each
segment. You specify the sections, both named and default, and the segments
to which the sections are assigned.

These memory management functions are identical to the ones available in the
Configuration Tool in CCS.

Targeting a Custom Target
To use a board that has a TI C6000 processor but is not one of the supported

boards, use the Custom C6000 target preferences block by adding it to your
model.

Configuring the block parameters tell Simulink, Embedded Target for TI
C6000 DSP, and Real-Time Workshop about your target processor and how to
generate code that will run on the target.

1 After you add the Custom C6000 target preferences block to your model,
open the block by selecting Edit > Open Block from the model menu bar.
This step opens the C6000 Target Preferences dialog box, containing default
values for all options. In the next steps you change the options to specify
features of your target processor and board.

Targeting Custom Hardware

2 Click Board Info to access the board information pane shown in the

following figure.

.} C6000 Target Preferences\Custom

Board Properties
Board type:

ICustom

Device: |62D1 j

I 200 hHz

[~ Enable High-Speed RTDMX

CPU clock speed:

[~ Simulator

g ml Y

Board Custom Code

Include paths
Libraries
Initialize functions
Terminate functions

| |

&l

Link to Code Cormposer Studio
CCS board name:

IDM5443 Cyele Accurate Simulator

CCE processor name:

[mvs32008400

I

OK | Apply | Cancel |

Help |

3 For Board type, enter Custom to tell the system you are targeting a board
that Embedded Target for TI C6000 DSP does not explicitly support.

4 Select your target processor from the Device list. Most of the C6000 family
of DSP processors are on the list. If the one you need is not listed, pick one

that closely matches your target.

5 Set the actual CPU clock rate for the CPU on your target in CPU clock speed
(MHz). Report the clock speed of the processor on your target. When you
enter a value, you are not changing the CPU clock rate, you are reporting

2-151

2 Targeting C6000 DSP Hardware

2-152

the actual rate. If the value you enter does not match the rate on the target,
your model real-time results might be wrong, and code profiling results will
not be correct. You must enter the actual clock rate the board uses. The rate
you enter here does not change the rate on the board. Setting CPU clock
speed to the actual board rate allows the code you generate to run correctly
according to the actual clock rate of the hardware.

6 Ifyour target is a simulator rather than a hardware target, select
Simulator.

7 Toenable high-speed RTDX, meaning that you are using a high-speed RTDX
emulator or your hardware configuration supports high-speed RTDX, select
Enable High Speed RTDX.

8 Toenable Embedded Target for TI C6000 DSP to connect to CCS, select your
target from the CCS board name list. On this list you see the names of the
boards you have configured in the CCS Setup Utility. If your target board
does not appear on the list, start CCS Setup and add your board to the
System Configuration dialog box.

9 Select the processor to target from the CCS processor name list. For the
board you selected in CCS board name, CCS processor name lists all the
processors on the board. The list comes from the processors you added to the
board in the CCS Setup Utility.

Now you have completed the process of identifying your target to Embedded
Target for TI C6000 DSP and Real-Time Workshop. While this process is
necessary, it represents only one small part of enabling you to generate code to
run on your custom board.

One very important part of targeting custom hardware is to provide the target
memory map configuration to the linker and assembler.

Memory and Sections panes on the C6000 Target Preferences dialog box
provide the controls required to specify how the linker and assembler arrange
the code, data, and variables on your target.

The following figures show the Memory and Sections panes with the default
values for all options.

Targeting Custom Hardware

Memory Pane

-} C6000 Target Preferences _ |zl x|

Board Info | emory Sections DSR/BIOS Ii

Physical memory

o PSS Y
IDRAM
Address: I 0300000000

Length: I 0300010000
Contents: ICode .l

LI Add | Remave |

Heap

[Create heap Heap size: I 1000
I~ Defitie label Heap label: I segrent_name

L2 cache

I~ Enahle |2 cache

L2 cache size: |32 kb 'l

OK Apply | Cancel | Help

2-153

2 Targeting C6000 DSP Hardware

2-154

Sections Pane

} C6000 Target Preferences _ o] x|

Eloardlnfol Mernory |

Compiler sections

4 | Description: ¢ code

switch

‘bss

far Placement; Im
.cinit

_pinit Ll

DSP/BIOS sectionséohjects

a | Description: Argument buffer

.ghlinit

Arodata

.SESdata Placement: IIDRAM 'l
.obj

“bins |

Data ohject placement: IIDRAM 'l
Code object placement: I|PRAM vl

Custom sections

& | Mame: I.SEC1
Placement: I|DRAM vl

Ll Add | Remove |

OK | Apply | Cancel | Help |

The information that follows describes the options on the panes in detail.

The Memory pane contains memory options in three areas:

® Physical Memory specifies the mapping for processor memory
¢ Heap specifies whether you use a heap and determines the size in words
® L2 Cache enables the L2 cache (where available) and sets the size in kB

Be aware that these options can affect the options on the Sections pane. You
can make selections here that change how you configure options on the
Sections pane.

Targeting Custom Hardware

Most of the information about memory segments and memory allocation is
available from the online help system for Code Composer Studio.

Physical Memory Options

This list shows the physical memory segments available on the board and
processor. By default, target preferences blocks show the memory segments
found on the selected processor. In addition, the Memory pane on
preconfigured target preferences blocks shows the memory segments available
on the board, but off of the processor. Target preferences blocks set default
starting addresses, lengths, and contents of the default memory segments.

The default memory segments for each processor and board are different. For
example:

¢ Custom boards based on C670x processors provide IPRAM and IDRAM
memory segments by default.

® C6711 DSK boards provide SDRAM memory segment by default

Name

When you highlight an entry on the Physical memory list, the name of the
entry appears here. To change the name of the existing memory segment, select
it in the Physical memory list and then type the new name here.

Note You cannot change the names of default processor memory segments.

To add a new physical memory segment to the list, click Add, replace the
temporary label in Name with the one to use, and press Return. Your new
segment appears on the list.

After you add the segment, you can configure the starting address, length, and
contents for the new segment. New segments start with code and data as the
type of content that can be stored in the segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as newsegment or
newSegment.

2-155

2 Targeting C6000 DSP Hardware

2-156

Address

Address reports the starting address for the memory segment showing in
Name. Address entries are in hexadecimal format and limited only by the
board or processor memory.

When you are using a processor-specific preferences block, the starting address
shown is the default value. You can change the starting value by entering the
new value directly in Address when you select the memory segment to change.

Length
From the starting address, Length sets the length of the memory allocated to
the segment in Name. As in all memory entries, specify the length in

hexadecimal format, in minimum addressable data units (MADUs). For the
C6000 processor family, the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the length shown is
the default value. You can change the value by entering the new value directly
in this option.

Contents

Contents describes the kind of program sections that you can store in the
memory segment in Name. As the processor type for the target preferences
block changes, the kinds of information you store in listed memory segments
can change. Generally, the Contents list contains these strings:

e Code—Allow code to be stored in the memory segment in Name.

® Data—Allow data to be stored in the memory segment in Name.

® Code and Data—Allow code and data to be stored in the memory segment in
Name. When you add a new memory segment, this is the default setting for
the contents of the new element.

You can add or use as many segments of each type as you need, within the
limits of the memory on your processor.

Add

Click Add to add a new memory segment to the target memory map. When you
click Add, a new segment name appears, for example NEWMEM1, in Name and on
the Physical memory list. In Name, change the temporary name NEWMEM1 by

Targeting Custom Hardware

entering the new segment name. Entering the new name, or clicking Apply
updates the temporary name on the list to the name you enter.

Remove

This option lets you remove a memory segment from the memory map. Select
the segment to remove in the Physical memory list and click Remove to delete
the segment.

Create Heap

If your processor supports using a heap, as do the C6711 or C6701, for example,
selecting this option enables creating the heap and enables the Heap size
option. Create heap is not available on processors that either do not provide
a heap or do not allow you to configure the heap.

Using this option you can create a heap in any memory segment on the
Physical memory list. Select the memory segment on the list and then select
Create heap to create a heap in the select segment. After you create the heap,
use the Heap size and Define label options to configure the heap.

The location of the heap in the memory segment is not under your control. The
only way to control the location of the heap in a segment is to make the segment
and the heap the same size. Otherwise, the compiler determines the location of
the heap in the segment.

Heap Size

After you select Create heap, this option lets you specify the size of the heap
in words. Enter the number of words in decimal format. When you enter the
heap size in decimal words, the system converts the decimal value to
hexadecimal format. You can enter the value directly in hexadecimal format as
well. Processors may support different maximum heap sizes.

Define Label

Selecting Create heap enables this option that allows you to name the heap.
Enter your label for the heap in the Heap label option.

Heap Label

Selecting Define label enables this option. You use Heap Label to provide the
label for the heap. Any combination of characters is accepted for the label
except reserved characters in C/C++ compilers.

2-157

2 Targeting C6000 DSP Hardware

2-158

Enable L2 Cache

C621x, C671x, and C641x processors support an L2 cache memory structure
that you can configure as SRAM and partial cache. Both the data memory and
the program share this second-level memory. C620x DSPs do not support L2
cache memory, and this option is not available when you choose one of the
C620x processors as your target.

If your processor supports the two-level memory scheme, this option enables
the L2 cache on the processor.

L2 Cache Size
After you enable the L2 cache, select the size of the cache from the list.

Sections Pane

Options on this pane let you specify where various program sections should go
in memory. Program sections are distinct from memory segments—sections
are portions of the executable code stored in contiguous memory locations.
Among the sections used generally are .text, .bss, .data, and .stack. Some
sections relate to the compiler, some to DSP/BIOS, and some can be custom
sections as you require.

For more information about program sections and objects, refer to the CCS
online help. Most of the definitions and descriptions in this section come from
CCS.

Targeting Custom Hardware

(5

Board Info | hdemary | Sections !

Carmpiler sections

Description: ¢ code
-switch

Placement: I|PRAM v|

:pinitl LI

DEFABIOS sections

Description: Argument buffer

.ghlinit

Arcdata .
sysdata Placement: IIDRAM .|

obj [

DER/BIOS ohject placement: IIDRAM "l

Customn sections

| Mame: |_5E01
Placement: IIDRAM '|

LI Addd | Remaove |

OK | Apply | Cancel | Help |

In the pane shown in the preceding figure, you configure the allocation of
sections for Compiler, DSP/BIOS, and Custom needs.

2-159

2 Targeting C6000 DSP Hardware

2-160

This table provides brief definitions of the various kinds of sections in the
Compiler, DSP/BIOS, and Custom lists. All sections do not appear on both
lists. The string appears on the list shown in the table.

String Section List Description of the Section Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the code

.bios DSP/BIOS DSP/BIOS code if you are using DSP/BIOS
options in your program

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global, defined as
far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS startup
initialization tables section

Lhwi DSP/BIOS Dispatch code for interrupt service routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the target
program can read

.pinit Compiler Load allocation of the table of global object
constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Compiler The global stack

Targeting Custom Hardware

String Section List Description of the Section Contents

.switch Compiler Jump tables for switch statements in the
executable code

.sysdata DSP/BIOS Data about DSP/BIOS
.sysinit DSP/BIOS DSP/BIOS initialization startup code
.sysmem Compiler Dynamically allocated object in the code

containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants

.trcdata DSP/BIOS TRC mask variable and its initial value

section load allocation

You can learn more about memory sections and objects in your Code Composer
Studio online help.

Compiler Sections

During program compilation, the C6000 compiler produces both uninitialized
and initialized blocks of data and code. These blocks are allocated into memory
as required by the configuration of your system. On the Compiler Sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections. The initialized
sections are

® cinit
® _const
® _switch

.text (created by the assembler)

These sections are uninitialized:

® .bss (created by the assembler)

e far
® stack
® _sysmem

2-161

2 Targeting C6000 DSP Hardware

2-162

Other sections appear on the list as well:
® _data (created by the assembler)

® .cio

® .pinit

Note The C/C++ compiler does not use this section.

When you highlight a section on the list, Description shows a brief description
of the section. Also, Placement shows you where the section is currently
allocated in memory.

Description
Provides a brief explanation of the contents of the selected entry in the
Compiler Sections list.

Placement

Shows you where the selected Compiler Sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments as defined in
the physical memory map on the Memory pane. Select one of the listed memory
segments to allocate the highlighted compiler section to the segment.

DSP/BIOS Sections

During program compilation, DSP/BIOS produces both uninitialized and
initialized blocks of data and code. These blocks get allocated into memory as
required by the configuration of your system. On the DSP/BIOS sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections.

Description
Provides a brief explanation of the contents of the selected DSP/BIOS Sections
list entry.

Targeting Custom Hardware

Placement

Shows where the selected DSP/BIOS Sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments available on
C6000 processors, and changes based on the processor you are using.

DSP/BIOS Object Placement

Distinct from the entries on the DSP/BIOS Sections list, DSP/BIOS objects
like STS or LOG, if your project uses them, are placed in the memory segment
you select from the DSP/BIOS Object Placement list. All DSP/BIOS objects
use the same memory segment. You cannot select the locations for individual
objects.

Custom Sections

When your program uses code or data sections that are not included in either
the Compiler Sections or DSP/BIOS Sections lists, you add the new sections
to this list. Initially, the Custom Sections list contains no fixed entries, just a
placeholder for a section for you to define.

Name

You enter the name for your new section here. To add a new section, click Add.
Then replace the temporary name with the name to use. Although the
temporary name includes a period at the beginning, you do not need to include
the period in your new name. Names are case sensitive. NewSection is not the
same as newsection, or newSection.

Placement

With your new section added to the Name list, select the memory segment to
which to add your new section. Within the restrictions imposed by the
hardware and compiler, you can select any segment that appears on the list.

Add

Clicking Add lets you configure a new entry to the list of custom sections. When
you click Add, the block provides a new temporary name in Name. Enter the
new section name to add the section to the Custom Sections list. After typing
the new name, click Apply to add the new section to the list. Or click OK to add
the section to the list and close the dialog box.

2-163

2 Targeting C6000 DSP Hardware

2-164

Remove

To remove a section from the Custom Sections list, select the section to remove
and click Remove. The selected section disappears from the list.

To Create Memory Maps for Targets

Although each processor has memory map requirements, the C6000 DSP
family of processors share some memory features and not others. Details of the
memory sections and segments, as well as memory allocations and limitations
for each processor, are provided in your documentation for CCS and from TI.

To manage the memory on your processor, set the options within these panes
to specify the memory allocation to use. Recall that the memory map is the
result of the settings you provide for the options in the Memory and Sections
panes in the C6000 Target Preferences dialog box.

Unfortunately, each processor has different needs, and the differences make it
impossible to provide details about how you set the options for your target. You
determine, from your model and code

® What memory segments you require

® Which sections you need and where

® Whether you need custom memory segments and sections

® Where to begin each memory segment and how much memory to allot to each
segment

® Any other information that you need to set the options on the Memory and
Sections panes?

After you configure the options in the C6000 Target Preferences dialog box, you
are ready to set the Simulink configuration parameters for your model and
generate code.

Using Embedded Target for TI C6000 DSP with Real-Time Workshop Embedded Coder

Using Embedded Target for TI C6000 DSP with Real-Time
Workshop Embedded Coder

To take advantage of Embedded Coder features, you must migrate your models
to a system target file called ti_c6000 ert.tlc. This target is based on the
embedded real-time target (ERT) used by Embedded Coder. Other TI C6000
target files are based on the generic real-time target (GRT).

To use Embedded Coder with the Embedded Target for TI C6000 DSP
Platform, you must choose the system target file ti_c6000_ert.tlc, available
in the System Target File Browser. If you already have a model with code
generation options configured for the target ti_c6000.t1lc, Embedded Target
for TT C6000 DSP provide a special utility function switchc6000target to
migrate the model instead.

If you simply choose the system target file ti_c6000_ert.tlc in the System
Target File Browser directly to change the target for the model, all the

TI C6000 code generation options are reset to default values by the switch. The
C6000-specific options are the same between the two system target files.

You can set your model to use this system target file the usual way, via the
System Target File Browser, available from the Real-Time Workshop pane
in the Configuration Parameters dialog box. However, when you use the
system target browser to switch your model between the ERT- and GRT-based
TI C6000 system target files, the TT C6000-specific options (the configuration
set) for the model are reset to default values.

To preserve the option values in the configuration set when you migrate your
model to the ERT-based target (or back to the GRT-based target), use the
function switchc6000target.m.

For example, the command

switchc6000target(bdroot, 'ti_c6000_ert.tlc')

entered at the MATLAB prompt sets your current Simulink model to use the
desired system target file—ti c6000_ert.tlc—while preserving the TI C6000
Real-Time Workshop options.

Conversely,

switchc6000target (bdroot, 'ti_c6000.tlc"')

sets your model to use the generic real-time (GRT)-based target.

2-165

2 Targeting C6000 DSP Hardware

2-166

To Use the Embedded Coder Target File
For setting up a new model to use the ERT-based target . tlc file.

1 From your model menu bar, select Simulation > Configuration
Parameters.

2 Click Real-Time Workshop on the Select tree to access the Real-Time
Workshop options.

3 Click Browse to open the System Target File Browser.

4 On the System Target File Browser, find and select the file
ti_c6000_ert.tlc.

5 Click OK.

For changing a model that uses the GRT-based target ti_c6000.tlc to use the
ERT-based target.

1 Open your Simulink model to change.

2 At the MATLAB prompt, enter
switchc6000target(gcs, 'ti_c6000_ert.tlc')

Now the current model uses the ERT-based target and the configuration set
that you developed for the GRT-based target.

When you return to the Configuration Parameters dialog box and check the
Real-Time Workshop system target file entry in the Real-Time Workshop
pane, you see ti_c6000_ert.tlc. The rest of the configuration options are
unchanged.

Targeting with DSP/BIOS
Options

Introducing DSP/BIOS (p. 3-2) Introduces DSP/BIOS from Texas Instruments.

DSP/BIOS and Targeting Your TI C6000 DSP Discusses the concepts and files used by

(p. 3-3) Embedded Target for TI C6000 DSP in
DSP/BIOS projects.

Profiling Generated Code (p. 3-10) Demonstrates how to set up and use profiling in

your generated code.

Using DSP/BIOS with Your Target Application = Shows you how to add DSP/ BIOS features to
(p. 3-25) your projects when you generate code.

3 Targeting with DSP/BIOS Options

Introducing DSP/BIOS

The Embedded Target for TI C6000 DSP supports DSP/BIOS™ features as
options when you generate code for your target. In the sections that follow, you
can read more about what DSP/ BIOS is, how the Embedded Target for TI
C6000 DSP incorporates the DSP/BIOS features into your generated code, and
some ways you might use the real-time operating system (RTOS) features of
DSP/BIOS in your application. Follow these links for more information on
specific areas that interest you, or read on for more details.

* “DSP/BIOS and Targeting Your TI C6000 DSP” on page 3-3

® “Code Generation with DSP/BIOS” on page 3-6

® “Profiling Generated Code” on page 3-10

e “Using DSP/BIOS with Your Target Application” on page 3-25

As a part of the Texas Instruments eXpressDSP™ technology, TI designed
DSP/BIOS to include three components:

¢ DSP/BIOS Real-Time Analysis Tools—use these tools and windows within
Code Composer Studio”" to view your program as it executes on the target in
real-time.

* DSP/BIOS Configuration Tool—enables you to add and configure any and all
DSP/BIOS objects that you use to instrument your application. Use this tool
to configure interrupt schedules and handlers, set thread priorities, and
configure the memory layout on your DSP.

* DSP/BIOS Application Program Interface (API)—lets you use C or assembly
language functions to access and configure DSP/BIOS functions by calling
any of over 150 API functions. The Embedded Target for TI C6000 DSP uses
the API to let you access DSP/BIOS from MATLAB.

You link these components into your application, directly or indirectly
referencing only functions you need for your application to run efficiently and
optimally. Only functions that you specifically reference become part of you
code base. Others are not included to avoid adding unused code to your project.
In addition, after you add one or more functions from DSP/BIOS, the
configuration tool help you disable feature you do not need later, letting you
optimize your program for speed and size.

For details about DSP/BIOS and what it can do for your applications, refer to
your CCS and DSP/BIOS documentation from Texas Instruments.

DSP/BIOS and Targeting Your TI C6000 DSP

DSP/BIOS and Targeting Your Tl C6000 DSP

When you use Real-Time Workshop to generate code from the Simulink model
of your digital signal processing application, you can choose to include the
DSP/BIOS features provided by the Embedded Target for TI C6000 DSP in
your generated code.

By electing to include DSP/BIOS in your generated project, the Embedded
Target for TI C6000 DSP adds a DSP/BIOS configuration file (with the
filename modelname.cdb) to your project, and adds the following files as well:

® modelnamecfg.s62—contains the DSP/BIOS objects required by your
application and the vector table for the hardware interrupts.

® modelnamecfg.h62—the header file for modelnamecfg.s62.

® modelnamecfg.h—model configuration header file.

® modelnamecfg_c.c—source code for the model.

® modelnamecfg.cmd—the linker command file for the project. Adds the
required DSP/BIOS libraries and the library RTS6201.1ib, or the run-time
support library for your target.

The executable code and source code you generate when you use the DSP/BIOS
option are not the same as the code generated without DSP/BIOS included.

Rather than having you incorporate the DSP/BIOS files manually when you
create your application, as you would if you used CCS alone, or another text
editor, the Embedded Target for TI C6000 DSP starts from your Simulink
model and adds the DSP/BIOS files automatically. As it adds the files it

¢ Configures the DSP/BIOS configuration file for your model needs

® Sets up the objects you need to analyze your program while it runs on your
target

¢ Handles memory mapping to optimize your code based on the blocks in your
model

DSP/BIOS Configuration File

DSP/BIOS projects all have a file with the extension . cdb. The file contains the
DSP/BIOS configuration information for your project, in the form of objects for

instrumenting and scheduling tasks in the program code. Included in any
DSP/BIOS project might be

3 Targeting with DSP/BIOS Options

® Log (LOG) objects for logging events and messages (replace the *printf
statements, for instance)

¢ Statistics (STS) objects for tracking the performance of your code

e A clock (CLK) object for configuring the clock on your target, and various
memory functions

® Hardware and software interrupt (HWI, SWI) objects that control program
execution

¢ Other objects you use to meet your needs

Your TI DSP/BIOS documentation can provide all the details about the objects
and how to use them. In addition, your installed software from TI includes
tutorials to introduce you to using DSP/BIOS in projects.

Not all of the DSP/BIOS objects get used by the code you generate from the
Embedded Target for TI C6000 DSP. In the next sections, you learn about
which objects the Embedded Target uses and how. Of course, you can still add
more objects to your code through CCS. Note, however, that if you add
additional DSP/BIOS objects beyond those provided by the Embedded Target
for TI C6000 DSP, you lose your additions when you regenerate your code from
your Simulink model.

Memory Mapping

Memory mapping that takes place in the linker command file now appears in
the MEM object in the DSP/BIOS configuration file. Your memory sections, such
as the DATA_MEM assignments and definitions, move to the MEM object, as do
the memory segments. After completing this conversion, the memory
assignment portions of your non-DSP/BIOS linker command file are not
necessary in the linker command file.

Hardware Interrupt Vector Table

In non-DSP/BIOS project, the assembly language file vector.asm in your
project defines the hardware interrupt vector table. This file defines which
interrupts your project uses and what each one does.

When you choose to use DSP/BIOS capabilities, the interrupts defined in the
vector table move to the Hardware Interrupt Service Routine Manager in the
CCS Configuration Tool. With all of your interrupts now defined as Hardware

DSP/BIOS and Targeting Your TI C6000 DSP

Interrupts (HWI) in the Configuration Tool, your project does not need
vector.asm so the file does not appear in your DSP/BIOS enabled projects.

Linker Command File

After migrating your memory sections and segment, and your hardware
interrupt vector table to the configuration file, building with the DSP/BIOS
option creates a compound linker command file. Since DSP/BIOS allows only
one command file per project, and your linker file may comprise command
options that did not relocate the DSP/BIOS configuration, Embedded Target
for TI C6000 DSP uses compound command files. Compound command files
work to let your project use more than one command file.

By starting your original linker command file with the statement

"-1modelnamecfg.cmd"

added as the first line in the file, your DSP/BIOS enabled project uses both your
original linker command file and the DSP/BIOS command file. You get the
features provide by DSP/BIOS as well as the custom command directives you
need.

3 Targeting with DSP/BIOS Options

Code Generation with DSP/BIOS

While generating code that includes the DSP/BIOS options is straightforward
using the Incorporate DSP/BIOS option in the TIC6000 code generation
options, changes occur between code that does not include DSP/BIOS and code
that does. Two things change when you generate code with DSP/BIOS—{files
are added and removed from the project in CCS, and DSP/BIOS objects become
part of your generated code. With these in place, you can use the DSP/BIOS
features in CCS to debug your project, as well as use the profiling option in
Embedded Target for TI C6000 DSP to check the performance of your
application running on your target.

Generated Code Without and With DSP/BIOS

The next two figures show the results of generating code without and with the
DSP/BIOS option enabled in the Simulation Parameters dialog.

Example —c6711dskwdnoisf.pjt code Generated Without DSP/BIOS
When you create your project in CCS, the directory structure looks like this.

Code Generation with DSP/BIOS

Q Files
FH-[Z7] GEL Files
E||:| Projects
E@ c6711dskwdnoisf.pjt
----- 671 1dskwdnoisf, cond
----- D D3PYBIOS Config
----- [[] =enerated Files
----- [Include
=-[Z] Libraries
..... #] dsp_rt_ce710.lb

----- 3 MY a7 _bslc
----- 3 MW _cATax_csl.c

#] ti_nonfinite.c
..... ¥] vectors.asm

Example —c6711dskwdnoisf.pijt Code Including DSP/BIOS

If you now create a new project that includes DSP/BIOS, the directory
structure for your project changes to look like the following figure.

3-7

3 Targeting with DSP/BIOS Options

Q Files

-2 =EL files

E||:| Projects

Eﬁ c6711dskwdnoisf.pjt

b 6711 dskywdnoisf, crnd
=I-[Z] DEPYEIOS Config
Lo _ __-;,' 671 1dskwdnoisf, cdb
=-[27] Generated Files

----- E 671 1dskwdnoisfcfg. s62

----- E 671 1dskwdnoisfcfg_c.c

----- [Include

=[] Libraries

..... %] dsp_rt_ce710.lib

| dspizx.lib

----- [#] rtw_rt_ce710.0ib

----- E 671 1dskwdnoisf_data.c
1] c&6711dskwdnaisf_main.c
----- E My _cETxx_bsl.c

----- E MW _caTar_csl.c

----- || rE_sim.c

----- E ti_nanfinite. c

Notice that the new directory includes some new files, shown in the next table.

Added File Description

modelname.cdb Contains the DSP/BIOS objects required by your
application, and the vector table for the hardware
interrupts

modelnamecfg.s62 Shows all the included files in your project, the

variables, the DSP/BIOS objects, and more in this
file generated from the .cdb file

3-8

Code Generation with DSP/BIOS

Added File

Description

modelnamecfg.h62
modelnamecfg.h
modelnamecfg _c.c

modelnamecfg.cmd

The header file for modelnamecfg.s62
Model configuration header file
Source code for the model

The linker command file for the project. Adds the
required DSP/BIOS libraries and the library
RTS6201.1ib or the run-time support library for
your target.

With DSP/BIOS functions enabled for your project, the following files no longer
appear in your project.

Filename

Description

vectors.asm

Original linker
command file—
modelname.cmd

Some *.1ib files

Defines the hardware interrupts (HWI) used by
interrupt service routines on the processor. This
file is removed after all of the hardware interrupts
appear in the HWI section of the Configuration
Tool.

Assigns memory sections on the processor. This file
is removed if the SECTION directive is empty
because all of the section assignments moved to the
configuration file. Otherwise, include call to the
DSP/BIOS command file.

Provide access to libraries for the processor, and
peripherals. These files are removed if their
contents have been incorporated in the new
compound linker command file.

When you investigate your generated code, notice that the function main
portion of modelname_main.c includes different code when you generate
DSP/BIOS-enabled source code, and modelname_main.c incorporates one or

more new functions.

3-9

3 Targeting with DSP/BIOS Options

3-10

Profiling Generated Code

When you use the Embedded Target for TI C6000 DSP to generate code that
incorporates the DSP/BIOS options, you can easily profile your generated code
to gauge performance and find bottlenecks.

By selecting Profile performance at atomic subsystem boundaries in the
Real-Time Workshop options, Real-Time Workshop inserts statistics (STS)
object instrumentation at the beginning and end of the code for each atomic
subsystem in your model. (For more about STS objects, refer to your DSP/BIOS
documentation from Texas Instruments.)

After your code has been running for a few seconds on your target, you can
retrieve the profiling results from your target back to MATLAB and display the
information in a custom HTML report.

Code profiling works only on atomic subsystems in your model. To allow
Embedded Target for TI C6000 DSP to profile your model when you build it in
Real-Time Workshop, you convert segments of your model into atomic
subsystems using Create subsystem.

By designating subsystems of your model as atomic, you force each subsystem
to execute only when all of its inputs are available. Waiting for all the
subsystem inputs to be available before running the subsystem allows the
subsystem code to be profiled as a contiguous segment.

To enable the profile feature for your Simulink model, choose

Tools > Real-Time Workshop > Options from the model menu bar. Navigate
to the TI C6000 code generation category, and select the

Profile performance at atomic subsystem boundaries check box.

Profiling Subsystems

Nested subsystems are profiled as part of their parent systems—the execution
time reported for the parent subsystem includes the time spent in any profiled
child subsystems. You cannot profile child subsystems separately.

For models that include multiple sample times, one or more subsystems in your
model might not be included in the profiling process. When your model is

configured to use single-tasking mode, all atomic subsystems in your model are
profiled and appear in the report. When your model uses multitasking (refer to
your Real-Time Workshop documentation for more about multitasking models)
profiling applies only to single-rate subsystems that execute at the base rate of

Profiling Generated Code

your model. This limitation arises because all of the generated code segments
must execute contiguously for the profiling timing measurements to be correct.
Setting the Tasking mode for periodic sample times to Auto in the model
configuration parameters does not guarantee contiguous execution for all code
segments and subsystems.

Notice two things in your code:

® STS objects are added to the generated code

¢ A generated DSP/BIOS configuration gets added to the project configuration
file

The Embedded Target for TI C6000 DSP inserts and configures these objects
specifically for profiling your code. You do not have to make changes to the ST'S
objects. To see the statistics objects in use, download your generated
application to your board, select DSP/BIOS > Statistics View from the menu
bar in CCS, and run the board for a few seconds. You see the statistics being
accumulated by the STS objects.

Details About Timing and Profiling

The profiling system in Embedded Target for TI C6000 DSP relies on
DSP/BIOS STS objects and the CLK_gethtime() function. CLK_gethtime()
returns a high resolution timing counter that enables profiling to measure the
instruction cycles the CPU spends executing code segments. To understand
profiling, you need to understand how CLK gethtime () works.

This is how the system determines the value of CLK_gethtime:

CLK_gethtime() return val = CLK_getltime() *PRDO + CNTO

PRDO and CNTO are timer O period and counter registers. In code generation,
BIOS allocates timer 0 as a system timer and set the timer to generate a timer
interrupt every 1ms. CLK_getltime() in turn returns the number of BIOS
system timer interrupts. By this logic, PRDO is set to the number of CPU clock
cycles divided by the number of low resolution clock cycles that is equivalent to
1 millisecond in absolute time (8 low resolution clock cycles for C64x
processors, for example).

The key point here is that function CLK_gethtime () relies onthe
CLK _getltime() function which in turn relies on a timer 0 interrupt. If your
process globally disables interrupts during code execution for more than 1 PRDO

3-11

3 Targeting with DSP/BIOS Options

3-12

instruction cycle, one or more timer interrupts can be missed, resulting in a
situation where both CLK _getltime() and CLK gethtime() can be inaccurate.

CLK getltime () will be inaccurate because it does not report the correct value
of time. But it is always be positive. The situation is worse for CLK_gethtime()

It may report negative timing around code segments where interrupts are
disabled:

A = CLK_gethtime();
IRQ_globalDisable();
{

Code segment;

}
IRQ_globalEnable();

B = CLK_gethtime();

In this situation, if interrupts are disabled longer than 1ms around the code
segment to be profiled, B might be smaller than A since CTNO might have rolled
over. So the count of the instruction cycles computed as (B - A) might be
negative.

Correcting Inaccurate Profile Information Due to Timing

One way to correct problems in profiling caused by the disabled interrupts is to
set the DSP/BIOS system timer interrupt to occur less frequently. As noted
earlier, the timer is set to 1 millisecond by default.

You can change setting manually after you generate code for your project. Here
are the steps to use to reset the DSP/BIOS system timer interval.

1 Open the .cdb file for the project.
2 Select Scheduling > CLK Clock Manager.
3 Right-click CLK Clock Manager to set the properties for the clock manager.

4 Change the Microseconds/Int value from the default 1000.00 microseconds
to something larger, for example, 5000.00 microseconds.

5 Save the project.

This timing change reduces the chances of missing a system timer interrupt. If
you do this and profile the code again, the profiling results are usually

Profiling Generated Code

accurate. You can verify that if you reduce the system timer interrupt interval
further, to perhaps 100 microseconds, you get less and less accurate profiling
results, possibly reporting negative timing values.

Profiling Multitasking Systems

For a multitasking system, DSP/BIOS STS objects cannot reliably measure the
time the processor spends in all tasks. When tasks can be preempted by other
tasks (a result of multitasking operation), the profile timing measurements
may be incorrect. For this reason, Embedded Target for TI C6000 DSP includes
profiling instrumentation for atomic systems that run at the base sample rate
only.

When you run the same model in single tasking mode, you can get the timing
measurements for all the systems in your model for one iteration:

1 Select Tools > Real-Time-Workshop > Options from the model menu bar.

2 Under Tasking on the Solver pane, select SingleTasking for Tasking
mode for periodic sample times.

3 Rebuild and execute your model on your C6000 hardware.

The program will probably overrun immediately since single tasking mode
requires that all tasks complete within the base sample time which usually
does not happen. However, all systems and subsystems do run once before the

program terminates. This allows you to obtain profiling results for all systems.

When the overrun occurs, click Halt in CCS to stop DSP/BIOS operation.

Then, enter CCS_Obj.profile('report') atthe MATLAB prompt to report the
statistics measurements.

Now you can view the timing measurements for each subsystem. Keep in mind
that the percentages are given relative to the base sample time, so you must do
some arithmetic to figure out whether a given system will fit in its available
time interval. For instance, if your base sample time is 1 second, subsystem A
executes every 3 seconds, the base-rate task takes 0.1 seconds to run, and A
takes 2.5 seconds to run, the system should execute without overruns in
multitasking mode.

3-13

3 Targeting with DSP/BIOS Options

3-14

Note If you change the overrun action option from its default setting of
Notify and halt to Notify and continue or None, you can get measurements
for multiple iterations of the system. Also, you will be able to request the
profile report without first halting the CPU.

The Profiling Report

To help you to measure subsystem performance, Embedded Target for T1
C6000 DSP provides a custom HTML report that analyzes and displays the
profile statistics. The HTML page shows you the amount of time spent
computing each subsystem, including both Outputs and Update code segments,
and provides links to open the corresponding subsystem in the Simulink model.

To view the profiling report, enter
profile(cc, 'report')

at the MATLAB prompt, where cc is the handle to your target and CCS and
report is one of the input arguments for profile.

When you generate the report, Embedded Target for TI C6000 DSP stores the
report in your code generation working directory, something like
modelname.c6000.rtw, with the name profileReport.html.

If MATLAB cannot find your code generation directory, the profile reports is
stored in your temporary directory, tempdir. To locate your temporary
directory, enter

tempdir

at the MATLAB command prompt.

Note Each time you run the profiling process, Embedded Target for TI C6000
DSP replaces your existing report with a newer version. To save earlier
reports, rename and save the report before you generate a new one, or change
your destination temporary directory in MATLAB.

Profiling Generated Code

You must invoke profile after your Real-Time Workshop build, without
clearing MATLAB memory between operations, so that stored information
about the model is still available to the report generator. If you clear your
MATLAB memory, information required for the profile report gets deleted and
the report does not work properly. When this occurs, and if you have a CCS
project that was previously created with Real-Time Workshop, you must repeat
the Real-Time Workshop build to see the subsystem-based profile analysis in
the report.

Trace each subsystem presented in the profile report back to its corresponding
subsystem in your Simulink model by clicking a link in the report. (The
mapping from Simulink subsystems to generated system code is complex and
thus not detailed here.) Inspect your generated code, particularly modelname.c,
to determine where and how Simulink and Real-Time Workshop implemented
particular subsystems.

Within the generated code, you see entries like the following that define STS
objects used for profiling.

STS_set(&stsSysO_Output, CLK gethtime());

or

STS_delta(&stsSysO_Output, CLK gethtime());

This pair of code examples perform the profiling of the code section that lies
between them in modelname.c.

In CCS, STS objects show up in the Statistics Object Manager section under
Instrumentation in the modelname.cdb file. Double-click the file
modelname.cdb in the CCS tree view to open the file and see the sections.

In some cases, Real-Time Workshop may have pruned unused data paths,
causing related performance measurements to become meaningless. Reusable
system code, or code reuse, where a single function is called from multiple
places in the generated code, can exhibit extra measurements in the profile
statistics, while the duplicate subsystem may not show valid measurements.

Interrupts and Profiling

Although there are STS objects that measure the execution time of the entire
md1Outputs and md1lUpdate functions, those measurements can be misleading
because they do not include other segments of code that execute at each

3-15

3 Targeting with DSP/BIOS Options

3-16

interrupt. Statistics for the SWI are used when calculating the headroom (the
difference between the number of CPU cycles your process requires to complete
and the number available for the process to complete, which does not include
the small overhead required for each interrupt. Note that profiling of
multitasking systems does not measure the headroom. In addition,
multitasking profiling does not use the SWI statistics.

To measure most accurately the overall application CPU usage, consider the
DSP/BIOS IDL statistics, which measure time spent not doing application
work. Your DSP/BIOS documentation from TI provides details about the
various DSP/BIOS objects in the cdb file.

The interrupt rate for a DSP/BIOS application created by the Embedded
Target for TI C6000 is the fastest block execution rate in the model. The
interrupt rate is usually, but not always, the same as the codec frame rate.
When there is an upsampling operation or other rate increasing operation in
your model, interrupts are triggered by a timer (PRD) object at the faster rate.
You can determine the effective interrupt rate of the model by inverting the
interrupt interval reported by the profiler.

Reading Your Profile Report

After you have the report from your generated code, you need to interpret the
results. This section provides a link to sample report from a model and explains
each entry in the report.

Sample of a Profile Report

When you click Sample Profile Report, the sample report opens in a new Help
browser window. This opens the sample report in a new window so you can read
the report and the descriptions of the report contents at the same time.
Running the model c6711dskwdnoisf with DSP/BIOS generates the sample
profile report. The next sections explain the headings in the report—what they
mean and how they are measured (where that applies).

Report Heading Information

At the beginning of the report, profiling provides the name of the model you
profiled, the target you used, and the date of the report. Since the report
changes each time you run it, the date can be an important means of tracking
model development.

Profiling Generated Code

Report Subsections and Contents

Within the body of your profile report, sections report the overall performance
of your generated code and the performance of each atomic subsystem.

Report Heading Description

Timing Constants Shows you the base sample time in your
model (=1/base rate in Hz) and the CPU
clock speed used for the analysis.

Profiled Simulink Presents the statistics for each profiled

Subsystems subsystem separately, by subsystem. Each
listing includes the STS object name or
names that instrument the subsystem.

STS Objects Lists every STS object in the generated code
and the statistics for each. DSP/BIOS uses
these objects to determine the CPU load
statistics. For more information about STS
objects, refer to your DSP/BIOS
documentation from TI.

STS objects that are associated with subsystem profiling are configured for
host operation at 4¥x, reflecting the numerical relationship between CPU clock
cycles and high-resolution timer clicks, x. STS Average, Max, and Total
measurements return their results in counts of instructions or CPU clock
cycles.

Definitions of Report Entries

In the following sections, we provide definitions of the entries in the profile
report. These definitions help you decifer the report and better understand how
your process is performing.

System name

Provides the name of the profiled model, using the form targetnameprofile.
targetname is the processor or board assigned as the target, via the target
preferences block.

3-17

3 Targeting with DSP/BIOS Options

3-18

Number of Iterations Counted

The number of interrupts that occurred between the start of model execution
and the moment the statistics were obtained.

CPU Clock Speed

The instruction cycle speed of your digital signal processor. On the C6701
EVM, you can adjust this speed to one of four values, where 100 MHz is the
default—25, 33.25, 100, 133 MHz. If you change the speed to something other
than the default setting of 100 MHz, you must specify the new speed in the
Real-Time Workshop options. Use the Current C6701EVM CPU clock rate
option on the TIC6000 runtime category on the RTW tab.

Set at a fixed 150 MHz, you cannot change the CPU clock rate on the C6711
DSK. You do not need to report the setting in the Real-Time Workshop options.

Maximum time spent in this subsystem per interrupt

The amount of time spent in the code segment corresponding to the indicated
subsystem in the worst case. Over all the iterations measured, the maximum
time that occurs is reported here. Since the profiler only supports
single-tasking solver mode, no calculation can be preempted by a new
interrupt. All calculations for all subsystems must complete within one
interrupt cycle, even for subsystems that execute less often than the fastest
rate.

Maximum Percent of base interval

The worst-case execution time of the indicated subsystem, reported as a
percentage of the time between interrupts.

STS Objects

Profiling uses STS objects to measure the execution time of each atomic
subsystem. ST'S objects are a feature of the DSP/BIOS run-time analysis tools,
and one STS object can be used to profile exactly one segment of code.
Depending on how Real-Time Workshop generates code for each subsystem,
there may be one or two segments of code for the subsystem; the computation
of outputs and the updating of states can be combined or separate. Each
subsystem is assigned a unique index, i. The name of each STS object helps you
determine the correspondence between subsystems and STS objects. Each STS
object has a name of the form

Profiling Generated Code

stsSysi_segment

where i is the subsystem index and segment is Output, Update, or
OutputUpdate. For example, in the sample profile report shown in the next
section, the STS objects have the names stsSys1_OutputUpdate, and
stsSys2_OutputUpdate.

Profiling Your Generated Code

Before profiling your generated code, you must configure your model and
Real-Time Workshop to support the profiling features in Embedded Target for
TI C6000 DSP. Your model must use DSP/BIOS features for profiling to work
fully.

The following tasks compose the process of profiling the code you generate.
1 Enable DSP/BIOS for your code.

2 Enable profiling in the Real-Time Workshop.

3 Create atomic subsystems to profile in your model.

4 Build, download, and run your model.

5 In MATLAB, use profile to view the profile report.

To demonstrate profiling generated code, this procedure uses the wavelet
denoising model c6711dskwdnoisf.mdl that is included with the Embedded
Target for TI C6000 DSP demo programs. If you are using the C6701 EVM as
your target, use the model C6710evmwdnoisf instead throughout this
procedure. Simulators work as well, just choose the appropriate model for your
simulator.

Begin by loading the model, entering
c6711dskwdnoisf

at the MATLAB prompt. The model opens on your desktop.

3-19

3 Targeting with DSP/BIOS Options

3-20

To Enable Profiling for Your Generated Code
Recall that you must use DSP/BIOS in you code to use profiling.

1 To enable the profile feature for your Simulink model, select
Tools > Real-Time Workshop > Options... from the model menu bar.

The Simulation Parameters dialog opens for you to set the code generation
options for your model.

2 Click Real-Time Workshop to display the configuration panes for setting
your code generation options.

3 From the Category list, select TI C6000 Code Generation.

Your display changes to show the options you set to control code generation
for TT C6000 targets, as shown here.

Profiling Generated Code

E! Configuration Parameters: c6711dskwdnoisf/Configuration il

Select

- Solver

- Data Import/Export

- Optimization

- Diagnostics
iSample Time
Data Integrity
Conversion
Connectivity
Compatibility
“-Model Referencing

- Hardware Implement...
- Model Refarencing
=-Real-Time Workshop
- Comments

- Symbols

- Custom Code

- Debug

- Interface

- Templates

- Data Placement

- Data Type Repla...
- TICB000 Code G...

- TICB000 Compile...

—Target Selection

¥ Export CCS handle to MATLAB base workspace:
CCS handle name: |CCS_Obj

—Code Generation

[v Incorporate DSP/BIOS

|7§Proﬁle performance at atomic subsystem boundaries |

¥ Inline run-time library functions

[~ Use target specific optimization for speed (allow LSB differences)

—Runtime

Build action: I Create_CCS_Project

overrun action: I Motify_and_continue

Lef L] Lol

QOverrun notification memod:l Turn_on_LEDs

0K I Cancel | Help | Apply |

4 Select the Profile performance at atomic subsystem boundaries option.
Selecting this option enables profiling in your generated code. However, you
still need to configure your model to support the profiling process.

To Create Atomic Subsystems for Profiling

Profiling your generated code depends on two features—DSP/BIOS being
enabled and your model having one or more subsystems defined as atomic
subsystems. To learn more about subsystems and atomic subsystems, refer to
your Simulink documentation in the Help browser.

3-21

3 Targeting with DSP/BIOS Options

3-22

In this tutorial, you create two atomic subsystems—one from the Analysis
Filter Bank block and a second from the Soft Threshold block:

Select the Analysis Filter Bank block. Select Edit > Create subsystem from
the model menu bar. Note that the name of the block changes to subsystem.
Repeat for the Soft Threshold block.

To convert your new subsystems to atomic subsystems, right-click on each
subsystem and choose Subsystem parameters... from the context menu.

In the Block Parameters: Subsystem dialog for each subsystem, select the
Treat as atomic unit option. Click OK to close the dialog. If you look closely
you can see that the subsystems now have heavier borders to distinguish
them from the other blocks in your model.

To Build and Profile Your Generated Code

You have enabled profiling in your model and configured two atomic
subsystems in the model as well. Now, use the profiling feature in Embedded
Target for TI C6000 DSP to see how your code runs and check the performance
for bottlenecks and slowdowns as the code runs on your target.

Note Do not click on any other open model while you are profiling your
model. Clicking on another open model can cause profiling to fail with an error
message like “Invalid Simulink object specifier.”

1 Select Tools > Real-Time Workshop > Build Model.

If you did not use the RTW options to automate model compiling, linking,
downloading, and executing, perform these tasks using the Project options
in CCS IDE.

Allow the application to run for a few seconds or as long as necessary to
execute the model segments of interest a few times. Then stop the program.

Profiling Generated Code

2 Create a link to CCS by entering the following command

cc = ccsdsp;
at the MATLAB prompt.

3 Enter
profile(cc, 'report')
at the prompt to generate the profile report of your code executing on your
target.

The profile report appears in the Help browser. It should look very much like
the portion of a sample report provided here; your results may differ based on
your target and your settings in the model.

3-23

3 Targeting with DSP/BIOS Options

3-24

Profile Report

Simulink model: c6416dskprofile.mdl
Target: C6416DSK

Report of profile data from Code Composer Studio (tm)
XX-XXX-2005 172727

Timing constants

Base sample time |250 ms

CPU Clock speed' | 720 MHz

Profiled Simulink Subsystems

System name

c6416dskprofile

STS object stsSys2_OutputUpdate
]\.Ia? time spent in this subsystem 14.93 s

per interrupt

Max percent of base interval 0.00597%

Number of iterations counted 144

System name

c6416 rofile/Subsystem]

STS object

stsSys1_OutputUpdate

Max time spent in this subsystem
per interrupt

128 pus

Max percent of base interval

0.00512%

Number of iterations counted

144

|»

Using DSP/BIOS with Your Target Application

Using DSP/BIOS with Your Target Application

The Embedded Target for TI C6000 DSP lets you build projects and generate
code with or without DSP/BIOS included.

To Enable DSP/BIOS When You Generate Code

For any code you generate using Real-Time Workshop and the Embedded
Target for TI C6000 DSP, you have the option of including DSP/BIOS features
automatically when you generate the code. Incorporating the features requires
you to select one option in the TI C6000 Code Generation settings—
Incorporate DSP/BIOS.

1 Open the model to use to generate code.

2 From your model menu bar, select Simulation > Simulation parameters...
to start the Simulation Parameters dialog.

3 From the Category list, select TI C6000 Code Generation.

To provide access to the options, the display changes to show the following
options.

3-25

3 Targeting with DSP/BIOS Options

E] Configuration Parameters: c6711dskwdnoisf/Configuration il

Select | —Target Selection
-~ Solver [¥ Export CCS handle to MATLAB base workspace:
----Datg |rnp?rUExp0r1 CCS handle name: ICCS_Obj
- Optimization

E-Diagnostics

-Sample Time
Data Integrity . X
Conversion [v:Profile performance at atomic subsystem boundaries |

—Code Generation

[Incorporate DSP/BIOS

Connectivity ¥ Inline run-ime library functions

Compatibility [Use target specific optimization for speed (allow LSB differences)
-Model Referencing

--Hardware Implement.. ~Runtime

--Maodel Referancing

=-Real-Time Workshop

-Comments overrun acﬁon:l Notify_and_continue

Build actjon:l Create_CCS_Project

Lef L] Lo

- Symbols

- Custom Code

- Debug

~Interface

- Templates

- Data Placement
--Data Type Repla...
- TIC6000 Code G...
- TICB000 Compile...

Qverrun notification method: | Turn_on_LEDs

0OK I Cancel I Help I Apply

4 As shown in the figure, select Incorporate DSP/BIOS.

5 Using the other entries on the Category list, set other options as you require
for your project.

6 For the Build action (under Runtime), select one of the following choices.
Each option generates code that includes the DSP/BIOS instrumentation:

= Create_CCS _project
= Build

3-26

Using DSP/BIOS with Your Target Application

= Build_and_execute

Notice that the Generate_code_only option is not on the preceding list.

Using the Generate_code_only option does not generate DSP/BIOS enabled
code.

7 Return to Real-Time Workshop on the Select tree.

8 Click Make Project, Build, or Build & Run to generate code.

3-27

3 Targeting with DSP/BIOS Options

3-28

Using the C62x and C64x
DSP Libraries

About the C62x and C64x Introduces the C62x and C64x DSP libraries
DSP Libraries (p. 4-2)

Fixed-Point Numbers (p. 4-4) Discusses the representation of fixed-point numbers in
the C62x and C64x DSP libraries

Building Models (p. 4-8) Reviews some issues to consider when you build models
with blocks from the C62x or C64x DSP libraries

4 Using the C62x and C64x DSP Libraries

About the C62x and C64x DSP Libraries

C62x DSP Library

Blocks in the C62x DSP library correspond to functions in the Texas
Instruments TMS320C62x DSP Library assembly-code library, which target
the TI C62x family of digital signal processors. Use these blocks to run
simulations by building models in Simulink before generating code. Once you
develop your model, you can invoke Real-Time Workshop to generate code that
is optimized to run on the C6711 DSK or C6701 EVM development platforms
or C62x hardware. (Fixed-point processing on C67x hardware is identical to
C62x fixed point hardware and processing so you can develop on the C67x for
the C62x.) During code generation, each C62x DSP Library block in your model
is mapped to its corresponding TMS320C62x DSP Library assembly-code
routine to create target-optimized code.

C62x DSP Library blocks generally input and output fixed-point data types.
Chapter 5, “Blocks — By Category” discusses the data types accepted and
produced by each block in the library. “Fixed-Point Numbers” on page 4-4 gives
a brief overview of using fixed-point data types in Simulink. For an in-depth
discussion of fixed-point data types, including issues with scaling and precision
when you perform fixed-point operations, refer to your Fixed-Point Toolbox
documentation.

You can use C62x DSP Library blocks with certain blocks from the Signal
Processing Blockset and Simulink. To learn more about creating models that
include both C62x DSP Library blocks and blocks from other blocksets, refer to
“Building Models” on page 4-8.

Cé64x DSP Library

Blocks in the C64x DSP library correspond to functions in the Texas
Instruments TMS320C64x DSP library assembly-code library, which target
the TI C64x family of digital signal processors. Use these blocks to run
simulations by building models in Simulink before generating code. Once you
develop your model, you can invoke Real-Time Workshop to generate code that
is optimized to run on the C6416 DSK development platform or other C64x
hardware. During code generation, each C64x DSP Library block in your model
is mapped to its corresponding TMS320C64x DSP Library assembly-code
routine to create target-optimized code.

About the C62x and Cb4x DSP Libraries

C64x DSP Library blocks generally input and output fixed-point data types.
Chapter 5, “Blocks — By Category” discusses the data types accepted and
produced by each block in the library. “Fixed-Point Numbers” on page 4-4 gives
a brief overview of using fixed-point data types in Simulink. For an in-depth
discussion of fixed-point data types, including issues with scaling and precision
when you perform fixed-point operations, refer to your Fixed-Point Toolbox
documentation.

You can use C64x DSP Library blocks with certain certain blocks from the
Signal Processing Blockset and Simulink. To learn more about creating models
that include both C64x DSP Library blocks and blocks from other blocksets,
refer to “Building Models” on page 4-8.

Note While you can use C62x blocks on C64x targets, the generated code is
not optimal for the C64x target. Using the appropriate C64x block creates
better optimized code. (Embedded Target for TIC6000 generates a warning
message when you try to do this but allows you to use the block.)

You cannot use the C64x blocks on your C62x target.

Characteristics Common to C62x and C64x Library
Blocks

The following characteristics are common to all C62x and C64x DSP Library
blocks:

¢ All blocks inherit sample times from driving blocks.

® The blocks are single rate.

¢ Block filter weights and coefficients are tunable, but not in real time. Other
block parameters are not tunable.

¢ All blocks support discrete sample times. Individual block reference pages
indicate blocks that also support continuous sample times.

To learn more about characteristics particular to each block in the library, refer
to Chapter 5, “Blocks — By Category.”

4 Using the C62x and C64x DSP Libraries

Fixed-Point Numbers

In digital hardware, numbers are stored in binary words. A binary word is a
fixed-length sequence of binary digits (1’s and 0’s). How hardware components
or software functions interpret this sequence of 1’s and 0’s is defined by the
data type.

Binary numbers are represented as either fixed-point or floating-point data
types. A fixed-point data type is characterized by the word size in bits, the
binary point, and whether it is signed or unsigned. The position of the binary
point is the means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a fractional fixed-point number (either
signed or unsigned) is shown below.

‘ bus_1 ‘ bus_o ‘ ’ b5| by | b3 ‘ 52‘ by ‘ by ’
MSB LSB

binary point

where

® b, is the ith binary digit.

® ws is the word size in bits.

® b, 11s the location of the most significant (highest) bit (MSB).
® b is the location of the least significant (lowest) bit (LSB).

® The binary point is shown four places to the left of the LSB. In this example
the number is said to have four fractional bits, or a fraction length of four.

Signed Fixed-Point Numbers

Signed binary fixed-point numbers are typically represented in one of three
ways:

® Sign/magnitude

® One’s complement

® Two’s complement

Fixed-Point Numbers

Two’s complement is the most common representation of signed fixed-point
numbers and the one TI digital signal processors use.

Negation using signed two’s complement representation consists of a bit
inversion (translation into one’s complement) followed by the binary addition
of a one. For example, the two’s complement of 000101 is 111011:

000101 ->111010 (bit inversion) ->111011 (binary addition of 1 to the L.SB)
results in the negative of 000101 being 111011.

Q Format Notation

The position of the binary point in a fixed-point number determines how you
interpret the scaling of the number. When performing arithmetic such as
addition or subtraction, hardware uses the same logic circuits regardless of the
value of the scale factor. In essence, the logic circuits have no knowledge of

a binary point. They perform signed or unsigned integer arithmetic—as if the
binary point is to the right of the LSB (b)). Therefore, you determine the binary
point in your code.

In the the C62x DSP Library, the position of the binary point in signed,
fixed-point data types is expressed in and designated by Q format notation.
This fixed-point notation takes the form

Qm.n

where

® @ designates that the number is in Q format notation—the Texas
Instruments notation for signed fixed-point numbers.

® m is the number of bits used to designate the two’s complement integer
portion of the number.

® n is the number of bits used to designate the two’s complement fractional
portion of the number, or the number of bits to the right of the binary point.
Sometimes 7 is called the scale factor.

Q format always designates the most significant bit of a binary number as the
sign bit. Representing a signed fixed-point data type in Q format requires
m+n+1 bits to account for the sign.

4-5

4 Using the C62x and C64x DSP Libraries

Example—Q.15

For example, a signed 16-bit number with n = 15 bits to the right of the binary
point is expressed as

Q0.15

in this notation. This is (1 sign bit) + (0 = m integer bits) + (15 = n fractional
bits) = 16 bits total in the data type. In Q format notation the m = 0 is often
implied, as in

Q.15
In the Fixed-Point Toolbox, this data type is expressed as

sfrac16

or

sfix16_En15

The Filter Design Toolbox expresses this data type as the vector
[16 15]

meaning the word length is 16 bits and the fraction length is 15 bits.

Example—Q1.30

Multiplying two Q.15 numbers yields a product that is a signed 32-bit data type
with 30 bits to the right of the binary point. One bit is the designated sign bit,
forcing m to be 1:

m+n+1 = 1+30+1 = 32 bits total

Therefore this number is expressed as
Q1.30

In the Fixed-Point Toolbox, this data type is expressed as
sfix32_En30

In the Filter Design Toolbox, this data type is expressed as
[32 30]

Fixed-Point Numbers

Example—Q-2.17

Consider a signed 16-bit number with a scaling of 217, This requires n = 17
bits to the right of the binary point, meaning the most significant bit is
a sign-extended bit.

Sign extension adds bits to the high end (MSB end) of the word and fills the
added bits with the value of the MSB. For example, consider a 4-bit two's
complement number 1011. Extending the number to 7 bits with sign extension
changes the number to 1111011—the value of the number remains the same.

One bit is the designated sign bit, forcing m to be -2.
m+n+1 = -2+17+1 = 16 bits total
Therefore this number is expressed as

Q-2.17

In the Fixed-Point Toolbox, this data type is expressed as
sfix16_En17

To express this data type in the Filter Design Toolbox, use
[16 17]

Example—Q17.-2

Consider a signed 16-bit number with a scaling of 24(2) or 4. The binary point
is implied to be 2 bits to the right of the 16 bits, or that there are n = -2 bits to
the right of the binary point. One bit must be the sign bit, forcing m to be 17.

m+n+1 = 17+(-2)+1 = 16

Therefore this number is expressed as
Q17.-2

In the Fixed-Point Toolbox, this data type is expressed as
sfix16_E2

In the Filter Design Toolbox, this data type is expressed as
[16 -2]

4 Using the C62x and C64x DSP Libraries

Building Models

You can use C62x or C64x DSP Library blocks in models along with certain
core Simulink and Signal Processing Blockset. This section discusses issues
you should consider when you build models with blocks from these libraries.

Converting Data Types

Any blocks you connect in a model have compatible input and output data
types. In most cases, C62x or C64x DSP Library blocks handle only a limited
number of specific data types. Refer to any block reference page in Chapter 5,
“Blocks — By Category” for a discussion of the data types that each block accept
sand produces.

When you connect C62x or C64x DSP Library blocks and Simulink blocks, you
often need to set the data type and scaling in the block parameters of the
Simulink block to match the data type of the C62x DSP Library block. Many
Simulink blocks allow you to set their data type and scaling by inheriting from
the driving block, or by back propagating from the next block. This can be a
good way to set the data type of a Simulink block to match a connected

C62x DSP Library block.

Some Signal Processing Blockset blocks and Simulink blocks also accept
fixed-point data types. Make the appropriate settings in these blocks’
parameters when you connect them to a C62x DSP Library block.

However, to use Signal Processing Blockset or core Simulink blocks that do not
handle fixed-point data types with C62x DSP Library blocks in your model, you
must use an appropriate data type conversion block:

® To connect fixed-point and nonfixed-point blocks, use the Simulink Data
Type Conversion block in the Data Type library of Simulink.

® To provide an interface to nonfixed-point blocks, use the C62x Convert
Floating-Point to Q.15 and C62x Convert Q.15 to Floating-Point blocks in the
C62x DSP Library.

® To connect blocks of varying nonfixed-point data types in your model, use the
Data Type Conversion block in the Signals and Systems Simulink library

® To connect blocks of varying fixed-point data types in your model, use the
Simulink Data Type Conversion Inherited block in the Data Type library of
Simulink.

Building Models

Refer to the reference pages for these blocks or invoke the Help system from
their block dialogs for more information.

Using Sources and Sinks

The C62x DSP Library does not include source or sink blocks. Use source or
sink blocks from the core Simulink library or Signal Processing Blockset in
your models with C62x DSP Library blocks. See “Converting Data Types” on
page 4-8 for more information on incorporating blocks from other libraries into
your models.

Choosing Blocks to Optimize Code

In some cases, blocks that perform similar functions appear in more than one
blockset. For example, the C62x DSP Library, the C64x DSP Library, and the
Signal Processing Blockset all have Autocorrelation blocks. How do you choose
which to include in your model? If you are building a model to run on the
C6711 DSK or C6701 EVM, or on C62x hardware, choosing the block from the
C62x DSP Library always yields better optimized code. You can use a similar
block from another library if it provides functionality that the

C62x DSP Library block does not support, but you generate less well optimized
code.

In the same manner, if you are building a model to run on the C6416 DSK or
on C64x hardware, choosing the block from the C64x DSP Library always
yields better optimized code. You can use a similar block from another library
if it provides functionality that the C64x DSP Library block does not support,
but you generate less well optimized code.

4 Using the C62x and C64x DSP Libraries

4-10

Blocks — By Category

Target Preferences (c6000tgtprefs)
(p. 5-2)

RTDX Instrumentation (rtdxblocks)
(p. 5-3)

C62x DSP (tic62dsplib) (p. 5-4)

C64x DSP (tic64dsplib) (p. 5-7)
C6416 DSK (c6416dsklib) (p. 5-10)
C6711 DSK (c6711dsklib) (p. 5-11)
C6713 DSK (c6713dsklib) (p. 5-12)
DM642 EVM (dm642evmlib) (p. 5-13)

C6000 DSP Core Support
(c6000dspcorelib) (p. 5-14)

TMDX3206040A DSP Support
(tmdx326040lib) (p. 5-15)

Host Communication (hostcommlib)
(p. 5-16)

C6000 DSP Communication
(targetcommlib) (p. 5-17)

DSP/BIOS (dspbioslib) (p. 5-18)

Configure targets for code generation and targeting

Add RTDX instrumentation to generated code

Work with C62x processor targets
Work with C64x processor targets
Work with C6416 DSK targets

Work with C6711 DSK targets

Blocks provided for C6713 DSK targets
Work with DM642 EVM targets

Work with all C6000 targets

Work with target that uses TMDX3206040A daughter
cards

Work with host-side models that communicate with C6000
targets

Work with target-side models that communicate with hosts
such as xPC or host-side models

Work with C6000 models to provide DSP/BIOS tasks and
interrupts

S Blocks — By Category

Target Preferences (c6000tgtprefs)

C6416DSK
C6455DSK
C6711DSK
C6713DSK
C6727PADK

Custom C6000

DM642EVM

Configure model for C6416 DSP Starter Kit
Configure model for C6455 DSP Starter Kit
Configure model for C6711 DSP Starter Kit
Configure model for C6713 DSP Starter Kit

Configure model for C6727 Professional Audio
Development Kit

Configure model for C6000-processor-based custom
hardware targets

Configure model for DM642 Evaluation Module

RTDX Instrumentation (rtdxblocks)

RTDX Instrumentation (rtdxblocks)

From Rtdx Add RTDX communication channel to send data from
MATLAB to target

To Rtdx Add RTDX communication channel to send data from
target to MATLAB

5-3

S Blocks — By Category

C62x DSP (tic62dsplib)

Conversions (p. 5-4) Convert data types
Filters (p. 5-4) Filter input signals
Math and Matrices (p. 5-5) Perform mathematical operations
Transforms (p. 5-5) Perform transforms
Conversions
C62x Convert Convert single-precision floating-point input

Floating-Point to Q.15 signal to Q.15 fixed-point
C62x Convert Q.15 to Convert Q.15 fixed-point signal to

Floating-Point single-precision floating-point

Filters

C62x Complex FIR Filter complex input signal using complex FIR
filter

C62x General Real FIR Filter real input signal using real FIR filter
C62x LMS Adaptive FIR LMS adaptive FIR filtering

C62x Radix-4 Real FIR Filter real input signal using real FIR filter
C62x Radix-8 Real FIR Filter real input signal using real FIR filter

C62x Real Forward Filter real input signal using lattice filter
Lattice All-Pole IIR
C62x Real IIR Filter real input signal using IIR filter

C62x Symmetric Real Filter real input signal using FIR filter
FIR

C62x DSP (tic62dsplib)

Math and Matrices

C62x Autocorrelation

C62x Block Exponent

C62x Matrix Multiply
C62x Matrix Transpose
C62x Reciprocal

C62x Vector Dot Product

C62x Vector Maximum
Index

C62x Vector Maximum
Value

C62x Vector Minimum
Value

C62x Vector Multiply
C62x Vector Negate

C62x Vector Sum of
Squares

C62x Weighted Vector
Sum

Transforms
C62x Bit Reverse

C62x FFT

Autocorrelate input vector or frame-based matrix

Minimum number of extra sign bits in each input
channel

Matrix multiply two input signals
Matrix transpose input signal

Fraction and exponent portions of reciprocal of
real input signal

Vector dot product of real input signals

Zero-based index of maximum value element in
each input signal channel

Maximum value for each input signal channel

Minimum value for each input signal channel

Element-wise multiplication on inputs
Negate each input signal element

Sum of squares over each real input channel

Weighted sum of input vectors

Bit-reverse elements of each complex input
signal channel

Decimation-in-frequency forward FFT of complex
input vector

S Blocks — By Category

C62xRadix-2 FFT Radix-2 decimation-in-frequency forward FFT of
complex input vector
C62xRadix-2 IFFT Radix-2 inverse FFT of complex input vector

Co4x DSP (tico4dsplib)

C64x DSP (tic64dsplib)

Conversions (p. 5-7)

Filters (p. 5-7)

Math and Matrices (p. 5-8)

Transforms (p. 5-8)

Data conversion

Filter input signals

Transforms

Conversions

C64x Convert
Floating-Point to Q.15

C64x Convert Q.15 to
Floating-Point

Filters
C64x Complex FIR

C64x General Real FIR
C64x LMS Adaptive FIR
C64x Radix-4 Real FIR
C64x Radix-8 Real FIR

C64x Real Forward
Lattice All-Pole IIR

C64x Real IIR

C64x Symmetric Real
FIR

Mathematical operations

Convert floating-point signal to Q.15 fixed-point

Convert Q.15 fixed-point signal to
single-precision floating-point

Filter complex input signal using complex FIR
filter

Filter real input signal using real FIR filter
LMS adaptive FIR filtering

Filter real input signal using real FIR filter
Filter real input signal using real FIR filter
Filter real input signal using lattice IIR filter

Filter real input signal using IIR filter
Filter real input signal using FIR filter

S Blocks — By Category

Math and Matrices

C64x Autocorrelation

C64x Block Exponent

C64x Matrix Multiply
C64x Matrix Transpose
C64x Reciprocal

C64x Vector Dot Product

C64x Vector Maximum
Index

C64x Vector Maximum
Value

C64x Vector Minimum
Value

C64x Vector Multiply
C64x Vector Negate

C64x Vector Sum of
Squares

C64x Weighted Vector
Sum

Transforms
C64x Bit Reverse

C64x FFT

Autocorrelate input vector or frame-based matrix

Minimum number of extra sign bits) in each
input channel

Matrix multiply two input signals
Matrix transpose input signal

Fraction and exponent of reciprocal of real input
signal

Vector dot product of real input signals

Zero-based index of maximum value element in
each input signal channel

Maximum value for each input signal channel

Minimum value for each input signal channel

Element-wise multiplication on inputs
Negate each input signal element

Sum of squares over each real input channel

Weighted sum of input vectors

Bit-reverse elements of each complex input
signal channel

Decimation-in-frequency forward FFT of complex
input vector

Co4x DSP (tico4dsplib)

C64x Radix-2 FFT

C64x Radix-2 IFFT

Radix-2 decimation-in-frequency forward FFT of
complex input vector

Radix-2 inverse FFT of complex input vector

S Blocks — By Category

5-10

C6416 DSK (c6416dsklib)

C6416 DSK ADC
C6416 DSK DAC

C6416 DSK DIP
Switch

C6416 DSK LED
C6416 DSK RESET

Digitized output from codec to processor
Use codec to convert digital input to analog output

Simulate or read DIP switches

Control LEDs

Reset to initial conditions

C6711 DSK (c671 1dsklib)

C6711 DSK (c6711dsklib)

C6711 DSK ADC
C6711 DSK DAC

C6711 DSK DIP
Switch

C6711 DSK LED
C6711 DSK RESET

Digitized output from codec to processor
Use codec to convert digital input to analog output

Simulate or read DIP switches

Control LEDs

Reset to initial conditions

5-11

S Blocks — By Category

5-12

C6713 DSK (c6713dsklib)

C6713 DSK ADC
C6713 DSK DAC

C6713 DSK DIP
Switch

C6713 DSK LED
C6713 DSK RESET

Digitized signal output from codec to processor

Configure codec to convert digital input to analog
output

Simulate or read DIP switches

Control LEDs

Reset to initial conditions

DM642 EVM ([dm642evmlib)

DM642 EVM (dm642evmlib)

DM642 EVM Audio ADC
DM642 EVM Audio DAC

DM642 EVM FPGA GPIO Read

DM642 EVM FPGA GPIO Write

DM642 EVM LED
DM642 EVM Reset
DM642 EVM Video ADC
DM642 EVM Video DAC
DM642 EVM Video Port

Audio codec and peripherals

Configure codec to convert digital audio
input to analog audio output

User GPIO registers to read from
selected pins

Write to GPIO registers

Control LEDs

Reset to initial conditions

Video decoders to capture analog video
Video encoder to display video

Video port to receive video data from
video input port

5-13

S Blocks — By Category

5-14

C6000 DSP Core Support (c6000dspcorelib)

CPU Timer
Hardware Interrupt
Idle Task

Memory Allocate
Memory Copy

Select timer and configure periodic interrupt
Generate Interrupt Service Routine

Create free-running task

Allocate memory section

Copy to and from memory section

TMDX3206040A DSP Support (tmdx326040lib)

TMDX3206040A DSP Support (imdx326040lib)

TMDX326040 ADC Configure codec on daughter card for output to
C6711 DSK
TMDX326040 DAC Configure codec on daughter card to send data to

analog output on card

5-15

S Blocks — By Category

5-16

Host Communication (hostcommlib)

Byte Pack
Byte Reversal
Byte Unpack

UDP Receive
UDP Send

Convert input signals into uint8 vector
Reverse order of bytes in input word

Unpack UDP uint8 input vector into Simulink
data type values

Receive uint8 vector as UDP message

Send UDP message to target

C6000 DSP Communication (targetcommlib)

C6000 DSP Communication (targetcommlib)

Byte Pack
Byte Reversal
Byte Unpack

C6000 IP Config

C6000 TCP/IP Receive
C6000 TCP/IP Send
C6000 UDP Receive
C6000 UDP Send

Convert input signals into uint8 vector
Reverse order of bytes in input word

Unpack UDP uint8 input vector into
Simulink data type values

Internet protocol configuration on C6000
target

Receive message from remote IP address
Send message to remote IP interface
Receive uint8 vector as UDP message

Send UDP message to host

5-17

S Blocks — By Category

|
DSP/BIOS (dspbioslib)

DSP/BIOS Hardware Interrupt Generate Interrupt Service Routine

DSP/BIOS Task Create task that runs as separate
DSP/BIOS thread
DSP/BIOS Triggered Task Create asynchronously triggered task

5-18

Blocks — Alphabetical List

Blocks — Alphabetical List

5-19

Byte Pack

Purpose Convert input signals into uint8 vector
Library Host Communication Library in Embedded Target for TI C6000 DSP
Descripl'ion Using the input port, the block converts data of one or more data types into

a single uint8 vector for output. With the options available, you specify the
b input data types and the alignment of the data in the output vector. Since UDP
Byte Fadk messages are in uint8 data format, use this block before a UDP Send block to
Fad format the data for transmission using the UDP protocol.

Dialog Box

=] Function Block Parameters: Pack X|
—Byte pack (mask)

Pack input data into a single output vector of type uint8. Insert before
UDP Send block to produce a uintd byte vector from multiple vectors
of varying data type.

—Parameters
Input port data types (cell array):
[double’]

Byte alignmentl‘l j

oK I Cancel | Help | Apply |

Input port data types (cell array)

Specify the data types for the different signals as part of the parameters.
The block supports all Simulink data types except characters. Enter the
data types as Simulink types in the cell array, such as 'double’ or 'int32'".
The order of the data type entries in the cell array must match the order in
which the data arrives at the block input. Signal sizes are determined
automatically by the block. The block always has at least one input port
and only one output port.

Byte alignment

This option specifies how the data types are aligned to form the uint8
output vector. Select one of the values in bytes from the list.

5-20

Byte Pack

Example

|

Alignment can occur on 1, 2, 4, or 8 byte boundaries depending on the value
you choose. The default is 1. Given the alignment value, each signal data
value begins on multiples of the alignment value. The alignment algorithm
ensures that each element in the output vector begins on a byte boundary
specified by the alignment value and relative to the starting point of the
vector.

Selecting 1 for Byte alignment provides the tightest packing, with no holes
between any data types for any combination of data types and signals.

In general, when you have multiple data types of varying lengths, specifying
two-byte alignment means there might be gaps of 1 byte between a uint8 or
int8value and another data type. In the pack implementation, the block copies
data to the output data buffer 1 byte at a time. You can specify any of the data
alignment options with any of the data types.

As you see in the following figure, enter input data types in a cell array in
Input port data types. The order of the data types you enter must match the
order of the data types at the block input.

=] Function Block Parameters: Pack . il
—Byte pack (mask)

Pack input data into a single output vector of type uintd. Insert before
UDP Send block to produce a uintd byte vector from multiple vectors
of varying data type.

—Parameters
Input port data types (cell array):
I{'uintS " 'uint3. '.'uinﬂS'.'doubIe'.'uintB'.'double'.'single'[}

Byte alignmentIZ j

oK I Cancel | Help | Apply |

In the cell array, you provide the order in which the block expects to receive
data — uint32, uint32, uint16, double, uint8, double, and single. With this
information, the block automatically provides the proper number of input
ports.

5-21

Byte Pack

Byte alignment equal to 2 specifies that each new value begins 2 bytes from the
previous data boundary.

In the example shown, the data types are

{'uint32','uint32"', 'uint16', 'double', 'uint8', 'double', 'single'}
Assuming that all of the signals are scalars (no matrices or vectors in this
example), the first signal value in the vector starts at 0 bytes, the second at 2
bytes, the third at 4 bytes, the fourth at 6 bytes, the fifth at 8 bytes, the sixth

at 10 bytes, and the seventh at 12 bytes. Notice that the packing algorithm
leaves a one byte gap between the uint8 data value and the double value.

See Also Byte Reversal, Byte Unpack

5-22

Byte Reversal

Purpose
Library

Description

Byte
reversal

BEyte Bevers=al

Dialog Box

|

Reverse order of bytes in input word
Host Communication Library in Embedded Target for TI C6000 DSP

Byte reversal changes the order of the bytes in data you input to the block. Use
this when your process communicates between targets that use different
endianness, such as between Intel processors that are little-endian and others
that are big-endian. Texas Instruments processors are generally little-endian
by default.

When you transmit data to a processor with different endianness, place a byte
reversal block just before the send block in a model and immediately after the
receive block to ensure that transmitted data has the correct endianness.

=] Function Block Parameters: Byte Ri X|

—Byte Reversal (mask)

Use Byte Reversal block for communicating with a target processor
thatis big-endian. Insert before the Byte Pack block or just after Byte
Unpack block to ensure that the data values are transmitted properly.

—Parameters

Number of inputs:

OK I Cancel | Help | Apply |

Number of inputs
Specify the number of input ports for the block. The number of input ports
adjusts automatically to match value so the number of outputs is equal to
the number of inputs.

When you use more than one input port, each input port maps to the
matching output port. Data entering input port 1 leaves through output
port 1 and so on.

5-23

Byte Reversal

Reversing the bytes does not change the data type. Input and output retain
matching data type.

The following model shows byte reversal in use. Notice that the input and
output ports match for each path.

_pgs|imtlE
[bin 0o01 0110 1111 1111]
Constant [kin 1331 1331 0001 0110 ‘
. inti6out
intl6 - intlf
2gq |uinslE - uintlf [bin 1110 1010 oooo 0000 ‘
» —P{
uintdz
Con=tantl [©in oooo o000 1110 1010 ®|5yve Beversa: uintlfout
Byte Reversal
uinelé p|[Ein 1130 1010 0000 0000 0000 0000 0000 0080]
ogg |HimEEE
uint3Zout
Conzzantl [&in _oo00 0000 000D 0000 0000 0000 1210 1040 |
uinsd2
See Also Byte Pack, Byte Unpack

5-24

Byte Unpack

|

Purpose Unpack UDP uint8 input vector into Simulink data type values
Library Host Communication Library in Embedded Target for TI C6000 DSP
Description Byte Unpack is the inverse of the Byte Pack block. It pairs with the UDP
Receive block in models, receiving a vector of uint8 from a UDP message and
s outputting Simulink data types in different sizes depending on the input
Byte Unpadk vector.
Unpadk

The block supports all Simulink data types.

Dialog Box

2] Function Block Parameters: Unpack X|
—Byte Unpack (mask)

Unpack a binary byte vector to extract data. Insert after UDP Recv
block to break-up a UDP packetinto its constituent data vectors.

—Parameters
Output port dimensions (cell array):
{01}

Qutput port data types (cell array):
|{'double'}

Byte alignmentl'l j

OK I Cancel | Help | Apply |

Output port dimensions (cell array)
Containing a cell array, each element in the array specifies the dimension
that the size function in MATLAB returns for the corresponding signal.
Usually you use the same dimensions as you set for the corresponding Byte
Pack block in the model. Entering one value means the block applies that
dimension to all data types.

Output port data types (cell array)

Specify the data types for the different input signals to the Pack block. The
block supports all Simulink data types — single, double, int8, uints,

5-25

Byte Unpack

int16,uint16, int32, and uint32, and boolean. The entry here is the same
as the Input port data types parameter in the Byte Pack block in the model.
You can enter one data type and the block applies that type to all output
ports.

Byte Alignment
Specifies how the data types are aligned in the input uint8 vector. This
should match the corresponding Byte Pack block alignment value, and
supports the same settings of 1, 2, 4, and 8 bytes.

Example Here is an example of the Byte Unpack block that corresponds to the example
in the Byte Pack example. The Output port data types (cell array) entry here
is the same as the Input port data types (cell array) entry in the Byte Pack
block

{'uint32','uint32', 'uint16', 'double', 'uint8', 'double', 'single'}.

=] Function Block Parameters: Unpack il
—Byte Unpack (mask)

Unpack a binary byte vector to extract data. Insert after UDP Recv
block to break-up a UDP packet into its constituent data vectors.

—Parameters

Qutput port dimensions (cell array):
|{‘|,‘|,[2,4],[4,4],[2,2],1,[3,3][}

Output port data types (cell array):

I{'uint3 "'uint32"'uint16','double’,'uintd','double’.'single"'}

Byte alignment|2 j

oK I Cancel | Help | Apply |

In addition, the Byte alignment setting matches as well. Output port
dimensions (cell array) now includes scalars and matrices to demonstrate
entering nonscalar values. The example for the Byte Pack block assumed only
scalar inputs.

5-26

Byte Unpack
|

See Also Byte Pack, Byte Reversal

5-27

C6000 IP Config

Purpose

Library

Description

5-28

Internet protocol configuration on C6000 target
C6000 DSP Communication Library in Embedded Target for TI C6000 DSP

Adding this block to your model provides options to configure the IP
parameters for your C6000 board. Setting the options for the block sets the
address and name for your board and specifies your target and Ethernet
daughtercard.

To use this block with the C6416, C6711, or C6713 DSK targets, you must meet
the following requirements.

¢ Install the D.signT DSK-91C111 Ethernet adapter daughter card.

¢ Configure the daughter card. Refer to “Configuring the D.signT
DSK-91C111 to Use TCP/IP and UDP” on page A-3 for more information
about configuring the card.

¢ Install the Texas Instruments TMS320C6000 TCP/IP stack software.

By default, the block uses dynamic addressing, getting the address from the
local server.If you have a dynamic host configuration protocol (DHCP) server
available, you can allow the server to provide an IP address for your board.
Dynamic IP addresses can be useful but unreliable — they can change. Create
a static IP address by clearing Use DHCP to allocate an IP address for
DM642 EVM (requires DHCP server). to enable the manual IP address
configuration parameters.

Note When you use the UDP Send and Receive blocks in a model, you must
also include this block to set up the IP drivers for the Ethernet parameters for
the target networking capability.

Whether you choose to use dynamic addressing, you must set the Host name
and Use the following CPU interrupt for Ethernet driver (4-13) options.

When you build and run your model, this block has no effect. It outputs zeros.
When you generate code from your model, this block adds the code that
configures IP on your board.

C6000 IP Config

|

Didlog Box The block dialog box provides options on two tabs — Device Config and IP
Parameters.

Device Tab Options

E] Block Parameters: IP Config il

’rCEDDD IF Config (mask)

et [P configuration parameters.

I IP Parameters |

Target platiorm | DME4ZEY/M |

Ethernet adapter daughtercardl Internal EMAC j
Use the following CPU interupt for Ethernet driver (4-13):

13

hemory segment for internal TCRAP stack bufters:

[SDRAM

¥ Enable status print-outs to Stdout

oK I Cancel Help Apply

Target platform
Specify your C6000 target by selecting the appropriate target board from
the list. Changing the target platform changes the entry on the Ethernet
adapter daughtercard list.

Ethernet adapter daughtercard
After you select you target platform, this option lets you select whatever
daughtercard is available to implement Ethernet communications on the

target.

5-29

C6000 IP Config

5-30

Use the following CPU interrupt for Ethernet driver (4-13)
The Ethernet driver on the DM642 can respond to any one of the CPU
interrupts from 4 to 13. Enter one valid CPU interrupt for the driver to
react to. CPU interrupt 13 is the default interrupt.

Memory segment for internal TCP/IP stack buffers

Shows you the segment in memory where the TCP/IP stack buffers reside.
For the supported boards, the default setting and location is SDRAM. You can
change the location by entering the name of the memory segment to use.
TCP/IP stack buffers occupy approximately 130 KB of memory. In most
cases you should locate the TCP/IP stack buffers in external memory. Be
sure that the segment you specify here agrees with the memory segment
allocation in the target preferences block in your model.

Enable status print-outs to Stdout

Select this option to direct the block to send IP status information to the
standard output device.

C6000 IP Config

IP Parameters Options

] Block Parameters: IP Config

’fCEUUD IF Canfig (mask)

et [P configuration parameters.

Devics Config | P Parameters
¥ Use DHCF to allocate an IP address {requires a DHCP server):

Use the following IP address:

[100.100.100.2

Subnet mask:

f255.255 255 0
Gateway IF:

|1 001001007

Dlamain name serser [P

fo.0.00

Dornain name (less than b4 characters):

Imathwclrks.net

Host name (less than B4 characters):

Idm8429vm

oF. I Cancel

Help

Ay |

Use DHCP to allocate an IP address for DM642 EVM (requires a DHCP

server)

Selecting this parameter configures the board to get an IP address from the
local DHCP server on the network. If you select this option and you do not
have a DHCP server, the generated code does not run correctly. Clearing

this option enables all of the IP configuration options for the block to let you

define your IP address manually.

Use the following IP address for DM642 EVM

Specify an IP address for the DM642 EVM. This value is the address that
others use to communicate with the evaluation module over IP. Use the full

XXX.XXX.XXX.Xxx format.

5-31

|

C6000 IP Config

See Also

5-32

Subnet mask

Define the subnet mask address, entering the full subnet mask in the
format xxx.xxx.xxx.xxx. Subnet masks define how many bits of the IP
address are used to identify the network.

By using 1s in all the address bits that identify the network, the subnet
mask shows you which bits define the network and which are internal to
the network. In the figure, the subnet mask 255.255.255.0 indicates that
the first three octets in the address define the network.

Gateway IP

Enter one address for the gateway server or router that maintains a more
complete listing of the surrounding networks. Messages that are destined
for machines outside the local network are sent to the gateway address for
address resolution.

Domain name server IP

Enter the address of the server for the domain in which the target is
a member.

Domain name

Enter the name for the domain. Without the correct domain name, the
target cannot communicate on the network within the domain.

Host name (less than 64 characters)

Enter the name of the host. Usually this value is the NetBIOS name for the
machine if it exists.

C6000 TCP/IP Receive, C6000 TCP/IP Send

C6000 TCP/IP Receive

Purpose
Library

Description

Beg M=g

TCE/IF Receivhen

ICE/IF Regmive

Receive message from remote IP address
C6000 DSP Communication Library in Embedded Target for TI C6000 DSP

Adding this block to your Simulink model results in generated code that
configures TCP/IP on your target to receive messages.

To use this block with the C6416, C6711, or C6713 DSK targets, you must meet
the following requirements.

¢ Install the D.signT DSK-91C111 Ethernet adapter daughter card.

¢ Configure the daughter card. Refer to “Configuring the D.signT
DSK-91C111 to Use TCP/IP and UDP” on page A-3 for more information
about configuring the card.

e Install the Texas Instruments TMS320C6000 TCP/IP stack software.

The block receives the message from the specified IP address on a host machine
and passes it out the Msg port to a downstream block. Msg port width is defined
by Maximum read size in the parameters, which also defines the largest
message the block can pass to downstream blocks. Use uint8_T for message
read size parameter.

A second block output is a function call port that issues a function call
whenever a new message is available on the receive buffer. The third output,
Len, data type uint16_T, specifies the length of the message to pass to
downstream blocks for variable length messages.

To specify the length of the TCP/IP message read request, provide the message
sizes as the input to the Req port. The block returns a message that contains
the number of bytes specified to be read by the value at the Req port.

If the number of bytes to read is greater than the value of Maximum read size,
the block ignores the maximum read size and reads as many bytes of data as
the output port Msg can accommodate. The output is in uint16_T format.

In simulations, this block outputs a stream of uint8 T data from the Msg port
with the first (Req) bytes set to OxFF and the rest set to 0x00. When the
function call port exists, it generates a function call for every sample time hit.

The Len port outputs a scalar that matches the number of requested bytes
coming from the Req port. Mdoels that contain this block generate code for the

5-33

C6000 TCP/IP Receive

parameters that configure TCP/IP on the target, including the ports, buffers,
and message sizes.

Dialog Box
E] Function Block Parameters: TCP/IP Recene il

—CBO00 TCR{IF Recerve (mask)

Configure TCP{IF stack to receive TCP/IP messages from a remaote interface
identified by a remote IF address and a rermote IP part parameter pair. Local port
pararmeter is used to specify the listening port on the target far incoming
connections.

—Farameters

Connectian type:l Server j

Femate IF adress and IFP portto receive from (format IP Address P por):

Local IF port:

43000

TCRJIP receive buffer size:
[5132

Maximum receive size:
(1460

[~ Enahle blocking mode

(8]4 I Cancel Help Apply |

Connection type
Connection type specifies the connection initiation method used for the
block. Choose either Server or Client from the list. This is a read-only
parameter. The setting is for your information — you cannot change it.

When you set this to Server, you create a listening socked at the IP address
and port in Loecal IP port. The TCP/IP layer uses this socket to accept
incoming connection requests. Any external TCP/IP interface that sends
TCP/IP data to this block must actively seek the connection to establish
communications (the client model).

5-34

C6000 TCP/IP Receive

Remote address and IP port to receive from (format IP Address:IP

port)
Identifies the remote TCP/IP interface, by IP address and IP port, from
which the block expects to receive messages. The input format uses the IP
address and IP port identifier, separated by a colon. IP port value ranges
from 0 to 65535. Entering a 0 for the IP port when the Connection type is
Client specifies that the TCP/IP stack automatically assigns a port to use
to seek connections.

Local IP port

This option identifies the IP port to use when Connection type is Server
and when it is Client.

When you choose Server, Local IP port specifies the well-known port of
the target TCP/IP server.Your IP port value must lie between 1 and 65535.

When you specify Client for the connection type, Local IP port specifies
the TCP/IP address for the client socket. The IP port value can range from
0 to 65535, where 0 specifies that the TCP/IP stack assigns an ephemeral
port automatically to seek connections.

TCP/P receive buffer size

Specifies the size of the buffer used for queuing incoming TCP/IP messages.
Typically, larger TCP/IP receive buffers provide a cushion for packet drops
and can improve efficiency. The compiler allocates the TCP/IP receive
buffer on the heap.

All TCP/IP blocks that specify a common local IP port must share a
common TCP/IP receive buffer, because the size of the TCP/IP buffer is set
only for the listening socket. All active connecting sockets inherit their
buffer size value from the listening socket.

Maximum receive size
Specifies the width in bytes of the output port. Set this value to the
maximum number of bytes you expect to read out of the TCP/IP receive
buffer during program execution. The block provides this parameter
because every Simulink block needs to specify its output port dimension
statically. Port dimension cannot change at run time.

5-35

C6000 TCP/IP Receive

See Also

5-36

Enable blocking mode

Select this option to put the calling TCP/IP task into blocking mode so that
the block receives messages completely before outputting the messages in
the buffer to downstream blocks. Blocks connected to the receive block do
not execute until the receive process completes. In blocking mode, program
execution for receiving data stops until data in the message buffer is
received.

Clearing this option puts the block in non blocking mode. The block checks
the number of bytes in the TCP/IP receive buffer and returns output data
only when the receive buffer contains more data than requested.

The block receives or outputs data at any time. Processes do not wait for
data. Disabling blocking activates the Sample time parameter and adds an
additional function call port to the block that indicates when the data port
contains new, valid data.

Selecting blocking mode activates the Timeout parameter.

Sample time

When the block is in non blocking mode, this value, in seconds, specifies
how frequently the block checks the receive buffer for new data.

C6000 TCP/IP Send, C6000 UDP Receive, C6000 UDP Send

C6000 TCP/IP Send

Purpose
Library

Description

Send message to remote IP interface
C6000 DSP Communication Library in Embedded Target for TI C6000 DSP

Adding this block to your Simulink model results in generated code that
configures TCP/IP on your target to send messages.

To use this block with the C6416, C6711, or C6713 DSK targets, you must meet
the following requirements.

¢ Install the D.signT DSK-91C111 Ethernet adapter daughter card.

¢ Configure the daughter card. Refer to “Configuring the D.signT
DSK-91C111 to Use TCP/IP and UDP” on page A-3 for more information
about configuring the card.

e Install the Texas Instruments TMS320C6000 TCP/IP stack software.

The block sends the message to the specified IP address on a host machine. One
block input (Msg) is the data vector with the message in data type uint8 T.

A second input is the length of the message to send. Provide this length as

a uint16_T data type. If the length value is smaller than the Msg port width,
the block transmits only the portion of the message that fits the specified
length. The rest of the message is not sent.

The optional output port Err specifies error conditions when a send operation
fails. Completed send operations return 0 at the Err output port.

In simulations, this block acts as a sink. It discards data passed to it via the
Msg port. If you enable the Err output port, it is set to 0 for simulation.

Models that contain this block generate code for the parameters that configure
TCP/IP on the target, including the ports, buffers, and message sizes.

5-37

C6000 TCP/IP Send

Dialog Box

5-38

E] Function Block Parameters: TCP/IP Send il
—CBO00 TCR{IF Zend (mask)

Configure TCP/IF stack to send TCR/IP messages to a remote interface
identified by a remote IF address and a rermote IP part pair. Local port parameter
i5 used to specify the listening port on the target for incoming connections. Use
Len port to specify the outgaing TCR/IF message size up to the input port width of
the k=g part (the rest of the signal coming to Msg port will be ignared).

—Farameters

Connection lypel Server 7]

Femote |F adress and IP portto send to (format IF address:IP port):
100.100.100.2:0

Local IF port:

|4anuu

TCRAF send buffer size;
[8132

v Show input por for the number of bytes to be sent
¥ Show output port for errar flags
[~ Enable hlocking mode

Ok I Cancel Help | Apply |

Connection type

Connection type specifies the connection initiation method used for the
block. Choose either Server or Client from the list. This is a read-only
value. You cannot change the setting from Server to Client.

When you set this parameter to Server, you create a listening socket at the
IP address and port you enter in Local IP port. The TCP/IP layer uses this
socket to accept incoming connection requests. For an external TCP/IP
interface to receive TCP/IP data from this block, it must actively seek the
connection to establish communications (the client model).

IP Address:IP port). External interfaces that want to exchange data with
this block must be listening at the specified remote IP address and port.

C6000 TCP/IP Send

Remote IP address and IP port to send to (format IP address:IP port)
Identifies the remote TCP/IP interface, by IP address and IP port, to which
the block expects to send messages. The input format uses the IP address
and IP port identifier, separated by a colon. IP port value ranges from 0 to
65535. Entering a 0 for the IP port when the Connection type is Client
specifies that the TCP/IP stack automatically assigns a port to use to seek
connections.

Local IP port
This option identifies the IP port used when Connection type is Server.

When the connection type is Server, Local IP port specifies the
well-known port of the target TCP/IP server. The IP port value must lie
between 1 and 65535.

TCP/P send buffer size

Specifies the size of the buffer used for queuing outgoing TCP/IP messages.
Typically, larger TCP/IP receive buffers provide a cushion for packet drops
and can improve efficiency. The compiler allocates the TCP/IP send buffer
on the heap.

All TCP/IP blocks that specify a common local IP port must share a
common TCP/IP send buffer, because the size of the TCP/IP buffer is set
only for the listening socket. All active connecting sockets inherit their
buffer size value from the listening socket.

Show input port for the number of bytes to be sent

Selecting this option adds and additional input port, Len, to the block. Len
specifies the number of bytes to send in the message. Use this option to
dynamically change the size of outgoing TCP/IP messages.

Show output port for error flags

Selecting this option adds a block output port for error messages. If the
send operation is successful, this port carries a value of 0 to indicate

5-39

C6000 TCP/IP Send

5-40

a successful send. The port carries a nonzero value to indicate an error
condition when the send operation fails. Four error codes exist.

Ovutput Error Meaning Generated Code Entry

Flag

(_ 1) Socket not #define MW_ENOTCONNECTED (-1)
connected

(-2) Reserved for #define MW_ESENDABORTED (-2) // Reserved

future use. Block
does not output
this error
condition

(_ 3) Socket Operation #define MW_ESOCKETERROR (-3)
failed with an

error from the
TCP/IP stack

(-4) Reserved for #define MW_ETIMEDOUT (-4) // Reserved
future use. Block
does not output
this error
condition

Enable blocking mode

Select this option to put the TCP/IP send process in blocking mode so that
the block sends messages before accepting new input messages. In blocking
mode, if a connection cannot be established, the send operation blocks
further execution until the connection is established and the data in the
message buffer is sent. Selecting Enable blocking mode adds the Timeout
option to the block parameters.

In non blocking mode, the block sends data only when it can establish
a connection and there is sufficient space in the TCP/IP send buffer. If
either of these conditions is not met, model execution skips the send
operation and continues with the next downstream block.

C6000 TCP/IP Send
|

See Also C6000 TCP/IP Receive, C6000 UDP Receive, UDP Receive

5-41

C6000 UDP Receive

Purpose

Library

Description

ceoon)
Msg
UDF Receive Len

5-42

UDP Receive

Receive uint8 vector as UDP message
C6000 DSP Communication Library in Embedded Target for TI C6000 DSP

This block configures the Ethernet driver on the target to receive UDP
messages. A UDP message comes into this block from the transport layer,
usually TCP/IP. The block passes the message to the next downstream block
out the Msg port. One block output (Msg) is the data vector from the message.
A second output is a flag that indicates when a new UDP message is available.
The third output specifies the length of the message for variable length
messages.

To use this block with the C6416, C6711, or C6713 DSK targets, you must meet
the following requirements.

¢ Install the D.signT DSK-91C111 Ethernet adapter daughter card.

® Configure the daughter card. Refer to “Configuring the D.signT
DSK-91C111 to Use TCP/IP and UDP” on page A-3 for more information
about configuring the card.

¢ Install the Texas Instruments TMS320C6000 TCP/IP stack software.

This block read a single UDP packet every sample hit. The length of the packet
read from the receive buffer is returned via the Len port. If the UDP packet size
is greater than the output port width parameter, UDP messages at the Msg
port are truncated. The part for the UDP packet that does not fit into the Msg
port is truncated and lost as a result. The missing message content cannot be
retrieved.

In non blocking mode, the data in the Msg port is not valid unless the block
issues a function call.

C6000 UDP Receive blocks operate only to generate code for the target
Ethernet driver. They do not perform any function in simulation and their
simulation outputs are zeros.

Note To use the C6000 UDP Send and C6000 UDP Receive blocks, you must
include the C6000 IP Config block to configure the Ethernet parameters for

C6000 UDP Receive

Dialog Box

the target network. This block sets up the IP drivers for use and must be in
the model for any network-related processing.

Additional options let you decide whether the UDP messages work in blocking
mode and set the sampling time for polling for new messages.

5] source Block Parameters: lJDIl' X|

—CRO00 LDF Receive (mask)
Configure TCR{IF stack to receive LIDF messages.

—FParameters
IP address to receive from (0.0.0.0 for accepting all):

0004
IF port to receive from (1-65535):
[25000

Clutput port width (bytes):

[&

UDF receive buffer size (bytes):
[8132

[~ Enahle blocking mode

Sample time:
[o.01

oF. I Cancel | Help |

IP address to receive from (0.0.0.0 to accept all)
Specifies the IP address from which the block accepts messages. Setting
the address 0.0.0.0 configures the block to accept messages from any IP
address. Setting a specific address, not 0.0.0.0, directs the block to accept
messages from the specified address only.

Selecting Enable blocking mode, disables the IP address to receive from
parameter. As a result, the block accepts messages from any IP address.
You must clear Enable blocking mode to be able to set IP address to receive

5-43

C6000 UDP Receive

See Also

5-44

from to any value other than 0.0.0.0. The block must be in non blocking
mode to specify the address to receive messages from via UDP.

IP port to receive from

Specify the port on this machine from which the block accepts messages.
The other end of the communication, usually a UDP Send block, sends
messages to this port. The default value is 25000, but the values can range
from 1 to 65535.

Output port width (bytes)
Specifies the width of messages that the block accepts. When you design
the transmit end of the UDP communication channel, you decide the
message width. Set this parameter to a value as large or larger than any
message you expect to receive.

UDP receive buffer size (bytes)

Specify the size of the buffer in which UDP messages are stored when
received. 8192 bytes is the default size. You need a buffer large enough to
store UDP messages that come in while your process reads a message from
the buffer or performs other tasks. Specifying the buffer size prevents the
receive buffer from overflowing.

Enable blocking mode

Select this option to put the UDP receive process in blocking mode meaning
the block outputs received messages before accepting input new messages.
In blocking mode, program execution for receiving data stops until data in
the buffer is sent. In non blocking mode, the block receives data or sends
data at any time. Processes do not wait for data.

Sample time (seconds)
Use this option to specify when the block polls for new messages. Entering
1 lets the block inherit the sample time from an upstream block. Setting
this to a specific value, often large, can reduce the chances of UDP
messages getting dropped. The default sample time is 0.01 seconds.

C6000 TCP/IP Receive, C6000 TCP/IP Send, C6000 UDP Send

C6000 UDP Send

Purpose
Library

Description

Msg CE000

L= DF Send

UDF Send

Send UDP message to host
C6000 DSP Communication Library in Embedded Target for TI C6000 DSP

The UDP send block configures the target’s on-board Ethernet driver to receive
a uint8 vector that it sends as a UDP message to the host. Models can contain
only one C6000 UDP Send block.

To use this block with the C6416, C6711, or C6713 DSK targets, you must meet
the following requirements.

¢ Install the D.signT DSK-91C111 Ethernet adapter daughter card.

¢ Configure the daughter card. Refer to “Configuring the D.signT
DSK-91C111 to Use TCP/IP and UDP” on page A-3 for more information
about configuring the card.

® Install the Texas Instruments TMS320C6000 TCP/IP stack software.

Msg input format must be a uint8 vector with UDP format. To use variable
length messages, supply the message length for each message as input to the
Len port. Message length can be any integer value in bytes up to the input
width of signal at the Msg port.

C6000 UDP Send blocks operate only to generate code for the target Ethernet
driver. They do not perform any function in simulation and they output zero.

Note To use the UDP Send and Receive blocks, for network processing, you
must include the C6000 IP Config block to set up the IP drivers for the target
Ethernet network.

5-45

C6000 UDP Send

Dialog Box
E] Sink Block Parameters: UDP Send il

—Ch000 LIDP Send (mask)

Configure TCP{IF stack to send UDF messages to a remote interface identified
by IF address and IF port pair. Use 'Len’ portto specify UDF packet sizes uptoa
maximurm of the width of input signal going inta the 'Msg’ port. The UDF packet
length is limited to & maximum of 1,472 bytes.

—Farameters

IF address to send to (255.255.255.255 for broadcast):

2556266 266,265

Femate |F portto send ta (1-65535):
[z5000

Use the following local IP port (-1 for autormatic port assignment):
[

¥ Show input port for number of bytes to be sent

0K I Cancel Help | Apply |

IP address to send to (255.255.255.255 for broadcast)

Specify the IP address to which the block sends the message. If you enter
the address 255.255.255.255, the block broadcasts message to any listening
IP address. If you enter a specific IP address, you limt the block to sending
the message to the specified address.

Remote IP port to send to (1-65535)
Specify the port on the host to which the block sends the message. Port
numbers range from 1 to 65535.

Note This port designation must match the port number where you configure
the host to receive UDP messages.

Use the following local IP port (-1 for automatic port assignment)

Specify the local IP port the block sends the message from. If you accept the
default value of 1, the network automatically selects the local IP port for
sending the message.

5-46

C6000 UDP Send
|

If the address you are sending to expects the message to come from

a specific port, enter that port address in this parameter. If you entered

a port number in the UDP Receive block option Remote IP port to receive
from, enter that port identifier in this parameter also.

Show input port for the number of bytes to be sent

Adds a block input port that lets you specify the number of bytes to send
for each UDP message. The maximum allowed value is 1472 bytes. Use the
input to dynamically the change the length of each message if necessary.

See Also C6000 TCP/IP Receive, C6000 TCP/IP Send, C6000 UDP Receive

5-47

C62x Autocorrelation

Purpose
Library

Description

TI CEZx

o4

AUTOCOR

Autocorrelation

Dialog Box

5-48

Autocorrelate input vector or frame-based matrix
C62x DSP Library — Math and Matrices

The Autocorrelation block computes the autocorrelation of an input vector or
frame-based matrix. For frame-based inputs, the autocorrelation is computed
along each of the input’s columns. The number of samples in the input channels
must be an integer multiple of eight. Input and output signals are real and

Q.15.

Autocorrelation blocks support discrete sample times and little-endian code
generation only.

Block Parameters: Autocorrelation B

— Autocomelation [mask] [link]

Compute the autocomelation of vectors or frame-based matrices. For
frame-bazed inputs, compute along the input's columns. Input channelz
muszt have a multiple of eight zamples. [nput and output are real and 0,15,

Wwhen set to 'Compute all non-negative lags'. compute using lags in the
range [0, lengthlinput)-1]. Otherwize, compute uzing lags in the range [0,
maxlag]. The walue of maxlag must be odd and is specified in "t aximnum
non-negative lag.

— Parameters
¥ Compute all non-negative lags

I awimium nen-neqative lag (less than mput length]:

I

Cancel | Help | Lpply |

Compute all non-negative lags

When you select this parameter, the autocorrelation is performed using all
nonnegative lags, where the number of lags is one less than the length of
the input. The lags produced are therefore in the range

[0, 1ength(input)-1]. When this parameter is not selected, you specify the
lags used in Maximum non-negative lag (less than input length).

Maximum non-negative lag (less than input length)

Specify the maximum lag (maxLag) the block should use in performing the
autocorrelation. The lags used are in the range [0, maxLag]. The maximum

C62x Avutocorrelation

lag must be odd. Enable this parameter by clearing the Compute all
non-negative lags parameter.

Algorithm In simulation, the Autocorrelation block is equivalent to the

TMS320C62x DSP Library assembly code function DSP_autocor. During code
generation, this block calls the DSP_autocor routine to produce optimized code.

5-49

C62x Bit Reverse

Purpose
Library

Description

TI CE2x

g

BITREV_CPLx

Bit Reverse

Dialog Box

Algorithm

Examples

5-50

Bit-reverse elements of each complex input signal channel
C62x DSP Library — Transforms

The Bit Reverse block bit-reverses the elements of each channel of a complex
input signal, X. The Bit Reverse block is primarily used to provide
correctly-ordered inputs and outputs to or from blocks that perform FFTs.
Inputs to this block must be 16-bit fixed-point data types.

The Bit Reverse block supports discrete sample times and little-endian code
generation only.

Block Parameters: Bit Reverse B

Bit Reverse [mask)

Bit reverse the positions of the elements of a complex input vwector. The
length of the input wector must be a power of two. Inputs can be of any
16-bit fixed-paoint data type.

Cancel | Help | Spply |

In simulation, the Bit Reverse block is equivalent to the

TMS320C62x DSP Library assembly code function DSP_bitrev_cplx. During
code generation, this block calls the DSP_bitrev_cplx routine to produce
optimized code.

The Bit Reverse block reorders the output of the C62xRadix-2 FFT in the model
below to natural order.

w2 stin 16 _Enif (o) [16x1 RADIXZ stin 16 _Enif (o) [16x1 BITREV_CPLX stin 16 _Enif (o) [16x1

Constant Radix2 FFT Bit Reverse Signal Ta
Matepaca?

The following code calculates the same FFT in the workspace. The output from
this calculation, y2, is displayed side-by-side with the output from the model, c.
The outputs match, showing that the Bit Reverse block reorders the Radix-2
FFT output to natural order:

k = 4;

C62x Bit Reverse

n = 2°k;
xr = zeros(n, 1);
xr(2) = 0.5;
xi = zeros(n, 1);
X2 = complex(xr, xi);
y2 = fft(x2);
ly2, c]
0.5000 0.5000
0.4619 - 0.19131i 0.4619 -
0.3536 - 0.35361i 0.3535 -
0.1913 - 0.46191i 0.1913 -
0 - 0.50001 0 -
-0.1913 - 0.46191i -0.1913 -
-0.3536 - 0.3536i1i -0.3535 -
-0.4619 - 0.19131i -0.4619 -
-0.5000 -0.5000
-0.4619 + 0.19131i -0.4619 +
-0.3536 + 0.3536i -0.3535 +
-0.1913 + 0.46191i -0.1913 +
0 + 0.50001 0 +
0.1913 + 0.46191i 0.1913 +
0.3536 + 0.35361 0.3535 +
0.4619 + 0.19131 0.4619 +
See Also C62xRadix-2 FFT, C62xRadix-2 IFFT

O O OO OoOOoOOo

O OO Oo0OOoOOoOOo

.19131
.35351
.46191
.50001
.46191
.35351
.19131

.19131
.35351
.46191
.50001
.46191
.35351
.19131

5-51

C62x Block Exponent

Purpose

Library

Description

TI CEZx

4

BEXF

Block Exponent

Dialog Box

Algorithm

5-52

Minimum number of extra sign bits in each input channel
C62x DSP Library — Math and Matrices

The Block Exponent block first computes the number of extra sign bits of all
values in each channel of an input signal, and then returns the minimum
number of sign bits found in each channel. The number of elements in each
input channel must be even and at least six. All input elements must be 32-bit
signed fixed-point data types. The output is a vector of 16-bit integers — one
integer for each channel of the input signal.

This block is useful for determining whether every sample in a channel is using
extra sign bits. If so, you can scale your signal by the minimum number of extra
sign bits to eliminate the common extra bits. This increases the representable
precision and decreases the representable range of the signal.

The Block Exponent block supports both continuous and discrete sample times.
This block also supports both little-endian and big-endian code generation.

Block Parameters: Block Exponent %]

Block Exponent [mazk)] (link)]

Compute the exponents [number of extra gign bitz) of all values in each
chanrel of the input zignal and return the minimum exponent found in
each channel. The number of elements in each input channel must be
even and at least s All input elements must be zsigned 32-bit fived-point
data types. The block outputs a wector of 16-bit integers, ane integer far
each channel of the input zignal,

Cancel | Help | Apply |

In simulation, the Block Exponent block is equivalent to the

TMS320C62x DSP Library assembly code function DSP_bexp. During code
generation, this block calls the DSP_bexp routine given to produce optimized
code.

C62x Complex FIR
|

Purpose Filter complex input signal using complex FIR filter

Library C62x DSP Library — Filtering

Description The Complex FIR block filters a complex input signal X using a complex FIR
T i filter. This filter is implemented using a direct form structure.

¢ P The number of FIR filter coefficients, which are given as elements of the input
FIR_CPLX vector H, must be even. The product of the number of elements of X and the
Complex FIR number of elements of H must be at least four. Inputs, coefficients, and outputs
are all Q.15 data types.

The Complex FIR block supports discrete sample times and little-endian code
generation only.

Dialog Box

— Complex FIR [mazk] [link]

Filter a complex input gignal =, having M samples per channel, using a
complex FIR fiter. The filter coefficients are specified by & comples wectar
H. with ah even number of elements MH. The product WHM must be at
least four. Input signals, coefficients, and output signals are all 3.15 data
types.

— Parameters
Coefficient source: ISpecify via dizlog j
Coefficients [H]:

Icomplex[[DJ L0.2,02.01]

Initial conditions:
jo

Cancel | Help | Apply |

Coefficient source
Specify the source of the filter coefficients:
e Specify via dialog — Enter the coefficients in the Coefficients (H)
parameter in the dialog

® Input port — Accept the coefficients from port H. This port must have
the same rate as the input data port X.

5-53

C62x Complex FIR

Coefficients (H)

Designate the filter coefficients in vector format. There must be an even

number of coefficients. This parameter is only visible when Specify via
dialog is selected for the Coefficient source parameter. This parameter
is tunable in simulation.

Initial conditions
If the initial conditions are

¢ All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length of this vector
must be one less than the number of coefficients.

¢ Different across channels, enter a matrix containing all initial conditions.
The number of rows of this matrix must be one less than the number of
coefficients, and the number of columns of this matrix must be equal to
the number of channels.

You may enter real-valued initial conditions. Zero-valued imaginary parts
will be assumed.

Algorithm In simulation, the Complex FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir_cplx. During code
generation, this block calls the DSP_fir_cplx routine to produce optimized
code.

See Also C62xGeneral Real FIR, C62xRadix-4 Real FIR, C62xRadix-8 Real FIR,
C62xSymmetric Real FIR

5-54

C62x Convert Floating-Point to Q.15

Purpose
Library

Description

Tl CEZx

%

FLTOQA1S

Conwvert Floating-
Fointto Q.15

Dialog Box

Algorithm

See Also

Convert single-precision floating-point input signal to Q.15 fixed-point
C62x DSP Library — Conversions

The Convert Floating-Point to Q.15 block converts a single-precision
floating-point input signal to a Q.15 output signal. Input can be real or
complex. For real inputs, the number of input samples must be even.

The Convert Floating-Point to Q.15 block supports both continuous and
discrete sample times. This block also supports both little-endian and
big-endian code generation.

Block Parameters: Convert Floating- Point to Q.15 %]

Convert Floating-Point to .15 [mask]

Conwert a single-precizion floating-point zignal to a 0.15 signal. Both real
and complex inputs are allowed. However, for real inputs only, the tatal
number of input samples must be even.

Cancel | Help | Spply |

In simulation, the Convert Floating-Point to Q.15 block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_f1toq15. During code
generation, this block calls the DSP_f1toq15 routine to produce optimized code.

C62xConvert Q.15 to Floating Point

5-55

C62x Convert Q.15 to Floating-Point

Purpose
Library

Description

TI CEZx

g

Q15TOFL

Conmvert Q.15
to Floating-Point

Dialog Box

Algorithm

See Also

5-56

Convert a Q.15 fixed-point signal to a single-precision floating-point
C62x DSP Library — Conversions

The Convert Q.15 to Floating-Point block converts a Q.15 input signal to a
single-precision floating-point output signal. Input can be real or complex. For
real inputs, the number of input samples must be even.

The Convert Q.15 to Floating-Point block supports both continuous and
discrete sample times. This block also supports both little-endian and
big-endian code generation.

Block Parameters: Convert [).15 to Floating-Poink 4]

Convert .15 to Floating-Point [mask)

Convert a .15 signal to a single-precizion floating-point signal. Both real
and complex inputs are allowed. Howewver, for real inputs only, the tatal
number of input sanmples must be even.

Cancel | Help | Spply |

In simulation, the Convert Q.15 to Floating-Point block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_q15tofl. During code
generation, this block calls the DSP_q15tof1 routine to produce optimized code.

C62xConvert Floating-Point to Q.15

C62x FFT

Purpose
Library

Description

Tl CE2x

! i

FFTAGXAGE
FFT

Decimation-in-frequency forward FFT of complex input vector
C62x DSP Library — Transforms

The FFT block computes the decimation-in-frequency forward FFT, with
interstage scaling, of each channel of a complex input signal. The input length
of each channel must be both a power of two and in the range 8 to 16,384,
inclusive. The input must also be in natural (linear) order. The output of this
block is a complex signal in natural order. Inputs and outputs are all signed
16-bit fixed-point data types.

The fft16x16r routine used by this block employs butterfly stages to perform
the FFT. The number of butterfly stages used, S, depends on the input length
L =27k. Ifk is even, then S = k/2. If k is odd, then S = (k+1)/2.

Ifk is even, then L is a power of two as well as a power of four, and this block
performs all S stages with radix-4 butterflies to compute the output. Ifk is odd,
then L is a power of two but not a power of four. In that case this block performs
the first (S-1) stages with radix-4 butterflies, followed by a final stage using
radix-2 butterflies.

To minimize noise, the FFT block also implements a divide-by-two scaling on
the output of each stage except for the last. Therefore, in order to ensure that
the gain of the block matches that of the theoretical FFT, the FFT block offsets
the location of the binary point of the output data type by (S-1) bits to the right
relative to the location of the binary point of the input data type. That is, the
number of fractional bits of the output data type equals the number of
fractional bits of the input data type minus (S-1).

OutputFractionalBits = InputFractionalBits—(S-1)

The FFT block supports both continuous and discrete sample times. This block
supports little-endian code generation.

5-57

C62x FFT

Dialog Box

Algorithm

See Also

5-58

FFT [mask] [link]

Compute the decimation-in-frequency forward FET of a comples input
vector. The input wector must be in natural [linear] order. The input length
must be in the range 8 to 16384, inclusive, and must be a power of bwo,
The complex output vectar iz in natural [inear] order. Inputs and outputs
are signed 16-bit fised-point data types.

Cancel | Help | Lpply |

In simulation, the FFT block is equivalent to the TMS320C62x DSP Library
assembly code function DSP_fft16x16r. During code generation, this block
calls the DSP_fft16x16r routine to produce optimized code.

C62xRadix-2 FFT, C62xRadix-2 IFFT

C62x General Real FIR

Purpose
Library

Description

Tl CEZx

4

FIR_GEN

zeneral Real FIR

Dialog Box

Filter real input signal using real FIR filter
C62x DSP Library — Filtering

The General Real FIR block filters a real input signal X using a real FIR filter.
This filter is implemented using a direct form structure.

The filter coefficients are specified by a real vector H, which must contain at
least five elements. The coefficients must be in reversed order. All inputs,
coefficients, and outputs are Q.15 signals.

The General Real FIR block supports discrete sample times and both
little-endian and big-endian code generation.

Block Parameters: General Real FIR B
— General Real FIR [mask] [link]

Filter a real input zignal * uzsing a real FIR filker. The filter coefficients are
zpecified by a real vector H, which must contain at least five elements.
The coeffizients must be in reversed order, [nput signals, coefficients, and
output signalz are all 0.15 data twpes.

— Parameters
Coefficient source: ISDBCif_'r' via dialog j

Coefficients [H]:
[niozo30408

Initial conditions:

B

Cancel | Help | Apply |

Coefficient source
Specify the source of the filter coefficients:

®Specify via dialog — Enter the coefficients in the Coefficients (H)
parameter in the dialog

® Input port — Accept the coefficients from port H. This port must have
the same rate as the input data port X

5-59

C62x General Real FIR

Coefficients (H)

Designate the filter coefficients in vector format. This parameter is only
visible when Specify via dialog is selected for the Coefficient source
parameter. This parameter is tunable in simulation.

Initial conditions
If the initial conditions are

¢ All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length of this vector
must be one less than the number of coefficients.

¢ Different across channels, enter a matrix containing all initial conditions.
The number of rows of this matrix must be one less than the number of
coefficients, and the number of columns of this matrix must be equal to
the number of channels.

The initial conditions must be real.

Algorithm In simulation, the General Real FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir_gen. During code
generation, this block calls the DSP_fir_gen routine to produce optimized code.

See Also C62xComplex FIR, C62xRadix-4 Real FIR, C62xRadix-8 Real FIR,
C62xSymmetric Real FIR

5-60

C62x LMS Adaptive FIR
|

Purpose LMS adaptive FIR filtering
Library C62x DSP Library — Filtering
Descripl'ion The LMS Adaptive FIR block performs least-mean-square (LMS) adaptive

N filtering. This filter is implemented using a direct form structure.
b

4 #

5 # " The following constraints apply to the inputs and outputs of this block:
FIRLMSZ

LM% Adaptive FIR ® The scalar input X must be a Q.15 data type.

¢ The scalar input B must be a Q.15 data type.
¢ The scalar output R is a Q1.30 data type.

e The output H has length equal to the number of filter taps and is a Q.15 data
type. The number of filter taps must be a positive, even integer.

This block performs LMS adaptive filtering according to the equations
e(n+1) =dn+1)-[H(n) -X(n+1)]

and
H(n+1) = H(n)+[pe(n+1) - X(n+1)]

where

® n designates the time step.

e X is a vector composed of the current and last nH — 1 scalar inputs.

® d is the desired signal. The output R converges to d as the filter converges.
* H is a vector composed of the current set of filter taps.

e ¢ isthe error, or d - [H(n)-X(n +1)].

® 1 is the step size.

For this block, the input B and the output R are defined by
B = pe(n+1)
R =H(n) X(n+1)

which combined with the first two equations, result in the following equations
that this block follows:

5-61

C62x LMS Adaptive FIR

e(n+1l)=dn+1)-R

H(n+1) = H(n)+[B-X(n+1)]

d and B must be produced externally to the LMS Adaptive FIR block. Refer to
Examples below for a sample model that does this.

The LMS Adaptive FIR block supports discrete sample times and both
little-endian and big-endian code generation.

Dialog Box
Block Parameters: LMS Adaptive FIR %]
—LMS Adaptive FIR [mask] [link]

Perform least-mean-square [LMS) adaptive FIR filtering. The rumber of
FIR filter taps must be a positive, even integer. The scalar inputz X and B
muszt be .15 data types. The scalar output B is a 071,30 data type. The
output H has length equal to the number of filker taps and iz a 0,15 data
type.

— Parameters
Murnber of FIR filter taps:

|54

Initial walue of filker taps:
o

W Dutput filter taps H?

Cancel | Help | Spply |

Number of FIR filter taps

Designate the number of filter taps. The number of taps must be a positive,
even integer.

Initial value of filter taps
Enter the initial value of the filter taps.

Output filter coefficients H?
If selected, the filter taps are produced as output H. If not selected, H is
suppressed.

Algorithm In simulation, the LMS Adaptive FIR block is equivalent to the

TMS320C62x DSP Library assembly code function DSP_firlms2. During code
generation, this block calls the DSP_firlms2 routine to produce optimized code.

5-62

C62x LMS Adaptive FIR
|

Examples The following model uses the LMS Adaptive FIR block.
e d

Random Data Type Conversion

Source

Digital Filter

r e B
L sfint_Ent [T sfin18_Ents
Subtract Gain
sfix16_Enl5 T DRZx | sfixdd_End0
5 J@ 1 a1 En1s [ide] | fut WOiE] i
Gateway In AL e— [Vo ¥
LM Adaptive FIR & temay Dut Signal Ta
Wotkepace
| 1| |
sfixt6 &t | o [

The portion of the model enclosed by the dashed line produces the signal B and
feeds it back into the LMS Adaptive FIR block. The inputs to this region are X
and the desired signal d, and the output of this region is the vector of filter taps
H . Thus this region of the model acts as a canonical LMS adaptive filter. For
example, compare this region to the adaptfilt.1lms function in the Filter
Design Toolbox. adaptfilt.lms performs canonical LMS adaptive filtering and
has the same inputs and output as the outlined section of this model.

To use the LMS Adaptive FIR block you must create the input B in some way
similar to the one shown here. You must also provide the signals X and d. This
model simulates the desired signal d by feeding X into a digital filter block.
You can simulate your desired signal in a similar way, or you may bring d in
from the workspace with a From Workspace or codec block.

5-63

C62x Matrix Multiply

Purpose
Library

Description

A II A2
Q R
B
hAAT_MLUL
td atriz Multiply

5-64

Matrix multiply two input signals
C62x DSP Library — Math and Matrices

The Matrix Multiply block multiplies two input matrices A and B. Inputs and
outputs are real, 16-bit, signed fixed-point data types. This block wraps
overflows when they occur.

The product of the two 16-bit inputs results in a 32-bit accumulator value. The
Matrix Multiply block, however, only outputs 16 bits. You can choose to output
the highest or second-highest 16 bits of the accumulator value.

Alternatively, you can choose to output 16 bits according to how many
fractional bits you want in the output. The number of fractional bits in the
accumulator value is the sum of the fractional bits of the two inputs.

Input A Input B Accumulator
Value
Total Bits 16 16 32
Fractional Bits R S R+S

Therefore R+S is the location of the binary point in the accumulator value. You
can select 16 bits in relation to this fixed position of the accumulator binary
point to give the desired number of fractional bits in the output (see Examples
below). You can either require the output to have the same number of fractional
bits as one of the two inputs, or you can specify the number of output fractional
bits in the Number of fractional bits in output parameter.

The Matrix Multiply block supports both continuous and discrete sample
times. This block also supports both little-endian and big-endian code
generation.

C62x Matrix Multiply

o
Dialog Box
Block Parameters: Matrix Multiply 4]

— M atriz Multiply [mask] [link]

Perform matrix multiplication =478, Inpute & and B must be real. All input
and output gsignals are zigned 16-bit fixed-point data types. Intermediate
accumulations have 32 bitz [631:b0] and wrap when overflow occurs..

— Parameters
Set fractional bits in output to: IMatch inpLt & j

Mumber of fractional bits in outpuk:

15

Cancel | Help | Lpply |

Set fractional bits in output to

Only 16 bits of the 32 accumulator bits are output from the block. Choose
which 16 bits to output from the list:

eMatch input A— Output the 16 bits of the accumulator value that cause
the number of fractional bits in the output to match the number of
fractional bits in input A (or R in the discussion above).

eMatch input B — Output the 16 bits of the accumulator value that cause
the number of fractional bits in the output to match the number of
fractional bits in input B (or S in the discussion above).

eMatch high bits of acc. (b31:b16) — Output the highest 16 bits of
the accumulator value.

eMatch high bits of prod. (b30:b15) — Output the second-highest 16
bits of the accumulator value.

eUser-defined — Output the 16 bits of the accumulator value that cause
the number of fractional bits of the output to match the value specified in
the Number of fractional bits in output parameter.

Number of fractional bits in output

Specify the number of bits to the right of the binary point in the output.
This parameter is enabled only when you select User-defined for Set
fractional bits in output to.

5-65

C62x Matrix Multiply

Algorithm

Examples

See Also

5-66

In simulation, the Matrix Multiply block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_mat_mul. During code
generation, this block calls the DSP_mat_mul routine to produce optimized code.

Example 1 Suppose A and B are both Q.15. The data type of the resulting
accumulator value is therefore the 32-bit data type Q1.30 (R + S = 30). In the
accumulator, bits 31:30 are the sign and integer bits, and bits 29:0 are the
fractional bits. The following table shows the resulting data type and
accumulator bits used for the output signal for different settings of the Set
fractional bits in output to parameter.

Set fractional bits in output to Data Type Accumulator Bits
Match input A Q.15 b30:b15
Match input B Q.15 b30:b15
Match high bits of acc. Q1.14 b31:b16
Match high bits of prod. Q.15 b30:b15

Example 2 Suppose A is Q12.3 and B is Q10.5. The data type of the resulting
accumulator value is therefore Q23.8 (R + S = 8). In the accumulator, bits 31:8
are the sign and integer bits, and bits 7:0 are the fractional bits. The following
table shows the resulting data type and accumulator bits used for the output
signal for different settings of the Set fractional bits in output to
parameter.

Set fractional bits in output to Data Type Accumulator Bits
Match input A Q12.3 b20:b5

Match input B Q10.5 b18:b3

Match high bits of acc. Q23.-8 b31:b16

Match high bits of prod. Q22.-7 b30:b15
C62xVector Multiply

C62x Matrix Transpose

Purpose
Library

Description

Tl CEZx

o4

MAT_TRANS

M atriz Transpose

Dialog Box

Algorithm

Matrix transpose input signal
C62x DSP Library — Math and Matrices

The Matrix Transpose block transposes an input matrix or vector. A 1-D input
is treated as a column vector and is transposed to a row vector. Input and
output signals are any real, 16-bit, signed fixed-point data type.

The Matrix Transpose block supports both continuous and discrete sample
times. This block also supports both little-endian and big-endian code
generation.

Block Parameters: Matrix Transpose %]

tatrix Transpose [mask] [link]

Compute the matrix transpose. Yector input signals are treated as [M=1]
matrices. The output iz always a matris. The input and output data types
may be any real signed 16-bit fixed-point data type.

Cancel | Help | Spply |

In simulation, the Matrix Transpose block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_mat_trans. During
code generation, this block calls the DSP_mat_trans routine to produce
optimized code.

5-67

C62x Radix-2 FFT

Purpose
Library

Description

Tl CEZx

4

RADLEZ

Radix2 FFT

Dialog Box

Algorithm

Examples

5-68

Radix-2 decimation-in-frequency forward FFT of complex input vector
C62x DSP Library — Transforms

The Radix-2 FFT block computes the radix-2 decimation-in-frequency forward
FFT of each channel of a complex input signal. The input length of each
channel must be both a power of two and in the range 16 to 32,768, inclusive.
The input must also be in natural (linear) order. The output of this block is

a complex signal in bit-reversed order. Inputs and outputs are signed 16-bit
fixed-point data types, and the output data type matches the input data type.

You can use the C62x Bit Reverse block to reorder the output of the Radix-2
FFT block to natural order.

The Radix-2 FFT block supports both continuous and discrete sample times.
This block supports little-endian code generation.

Block Parameters: Radiz-2 FFT B
FRadis-2 FFT [maszk] (link)

Compute the radis-2 decimation-in-fregquency foramard FFT of a complex
input wectar, The input vector must be in natural (inear] order. The input
length must be in the range 16 to 32768, incluzive, and must be a power
of bwo. The output vector iz complex and in bit-reversed order. Inputs and
outputs are signed 16-bit fixed-point data types.

Cancel | Help | Spply |

In simulation, the Radix-2 FF'T block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_radix2. During code
generation, this block calls the DSP_radix2 routine to produce optimized code.

The output of the Radix-2 FF'T block is bit-reversed. This example shows you
how to use the C62x Bit Reverse block to reorder the output of the Radix-2 FFT
block to natural order.

w2 stin 16 _Enif (o) [16x1 RADIXZ stin 16 _Enif (o) [16x1 BITREV_CPLX stin 16 _Enif (o) [16x1

Constant Radix2 FFT Bit Reverse Signal Ta
Matepaca?

C62x Radix-2 FFT

See Also

The following code calculates the same FFT as the above model in the
workspace. The output from this calculation, y2, is then displayed side-by-side
with the output from the model, c. The outputs match, showing that the Bit
Reverse block does reorder the Radix-2 FFT block output to natural order:

= zeros(n,
(2) = 0.5;
= zeros(n,

)5

)5

X2 = complex(xr, xi);
y2 = fft(x2);

,» €]
0.5000
0.4619
0.3536
0.1913

0
-0.1913
-0.3536
-0.4619
-0.5000
-0.4619
-0.3536
-0.1913

0
0.1913
0.3536

+ + 4+ 4+ + +
Oooooo

(el elNelNeolNeNeNol

.19131
.35361
.46191
.50001
.46191
.35361
.19131

.19131
.35361
.46191
.50001
.46191
.35361

0.4619 + 0.19131i

C62x Bit Reverse, C62x FFT, C62x Radix-2 IFFT

o O oo

-0.
-0.
-0.
-0.
-0.
-0.
-0.

0.
0.

.5000
.4619
.3535
.1913

0
1913
3535
4619
5000
4619
3535
1913

0
1913
3535

+ + + + + o+
Oooooo

O O OO OoOOoOo

.19131
.35351
.46191
.50001
.46191
.35351
.19131

.19131
.35351
.46191
.50001
.46191
.35351

0.4619 + 0.19131i

5-69

C62x Radix-2 IFFT

Purpose

Lib

rary

Description

Tl CEZx

4

RADLEZ

Radix2 IFFT

Dialog Box

5-70

Radix-2 inverse FFT of complex input vector
C62x DSP Library — Transforms

The Radix-2 IFFT block computes the radix-2 inverse FFT of each channel of a
complex input signal. This block uses a decimation-in-frequency forward FFT
algorithm with butterfly weights modified to compute an inverse FFT. The
input length of each channel must be both a power of two and in the range 16
to 32,768, inclusive. The input must also be in natural (linear) order. The
output of this block is a complex signal in bit-reversed order. Inputs and
outputs are signed 16-bit fixed-point data types.

The radix2 routine used by this block employs a radix-2 FFT of length L=2"k.
In order to ensure that the gain of the block matches that of the theoretical
IFFT, the Radix-2 IFFT block offsets the location of the binary point of the
output data type by k bits to the left relative to the location of the binary point
of the input data type. That is, the number of fractional bits of the output data
type equals the number of fractional bits of the input data type plus k.

OutputFractionalBits = InputFractionalBits + (k)

You can use the C62x Bit Reverse block to reorder the output of the Radix-2
IFFT block to natural order.

The Radix-2 IFFT block supports both continuous and discrete sample times.
This block supports little-endian code generation.

Block Parameters: Radiz-2 IFFT B
Radis-2 IFFT [mask] [link]

Compute the radis-2 iverse FFT of a complex input vectar. The block.
uzes a radix-2 decimation-in-frequency forward FFT algarithm with buttertly
weights modified to compute an inverse FET. The input vector must be in
natural [linear] order. The input length must be in the range 16 to 32768,
inclusive, and must be a power of twao, The complex output vectar iz in
bit-reversed order. Inputs and outputs are signed 16-bit fixed-point data
types.

Cancel Help Lpply

C62x Radix-2 IFFT
|

Algorithm In simulation, the Radix-2 IFFT block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_radix2. During code
generation, this block calls the DSP_radix2 routine to produce optimized code.

See Also C62x Bit Reverse, C62x FFT, C62x Radix-2 FFT

5-71

C62x Radix-4 Real FIR

Purpose Filter real input signal using real FIR filter

Library C62x DSP Library — Filtering

Description The Radix-4 Real FIR block filters a real input signal X using a real FIR filter.
T CEom This filter is implemented using a direct form structure.

'# P The number of input samples per channel must be even. The filter coefficients
FIR_R4 are specified by a real vector, H. The number of filter coefficients must be
Radi-4 Real FIR a multiple of four and must be at least eight. The coefficients must also be in

reversed order. All inputs, coefficients, and outputs are Q.15 signals.

The Radix-4 Real FIR block supports discrete sample times and both
little-endian and big-endian code generation.

o
Dialog Box
Block Parameters: Radix-4 Real FIR B

— Radix-4 Real FIR [mazk] [link]

Filter a real input zignal # uzing a real FIR filker. The number of input
zamples per channel must be even. The filker coefficients are specified by
a real vectar H. The number of coefficients must be a multiple of four and
must be at least eight. The coefficients must be in reversed order. Input
zighals, coefficients, and output zignalz are all (.15 data types.

— Parameters

Coefficient source: Ispecify via dialog =l

Coefficients [H]:
|[D.1 020304060E0708]

Initial conditions:
jo

Cancel | Help | Apply |

Coefficient source
Specify the source of the filter coefficients:

®Specify via dialog — Enter the coefficients in the Coefficients
parameter in the dialog

® Input port — Accept the coefficients from port H. This port must have
the same rate as the input data port X

5-72

C62x Radix-4 Real FIR
|

Coefficients (H)

Designate the filter coefficients in vector format. This parameter is only
visible when Specify via dialog is selected for the Coefficient source
parameter. This parameter is tunable in simulation.

Initial conditions
If the initial conditions are

® All the same, enter a scalar.

¢ Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length of this vector
must be one less than the number of coefficients.

¢ Different across channels, enter a matrix containing all initial conditions.
The number of rows of this matrix must be one less than the number of
coefficients, and the number of columns of this matrix must be equal to
the number of channels.

Initial conditions must be real.

Algorithm In simulation, the Radix-4 Real FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir r4. During code
generation, this block calls the DSP_fir_ r4 routine to produce optimized code.

See Also C62xComplex FIR, C62xGeneral Real FIR, C62xRadix-8 Real FIR,
C62xSymmetric Real FIR

5-73

C62x Radix-8 Real FIR

Purpose
Library

Description

TI CE2x

4

FIR_R=

Radix-& Real FIR

Dialog Box

5-74

Filter real input signal using real FIR filter
C62x DSP Library — Filtering

The Radix-8 Real FIR block filters a real input signal X using a real FIR filter.
This filter is implemented using a direct form structure.

The number of input samples per channel must be even. The filter coefficients
are specified by a real vector, H. The number of coefficients must be an integer
multiple of eight. The coefficients must be in reversed order. All inputs,
coefficients, and outputs are Q.15 signals.

The Radix-8 Real FIR block supports discrete sample times and little-endian
code generation only.

Block Parameters: Radix-8 Real FIR B

—Radi=-8 Real FIR [mazk] [link]

Filter a real input zignal # uzing a real FIR filker. The number of input
zamples per channel must be even. The filker coefficients are specified by
a real vectar H. The number of coefficients must be an integer multiple of
eight. The coefficients must be in reversed order. Input signals,
coefficients, and output signals are all 3.15 data types.

— Parameters

Coefficient source: Ispecify via dialog =l

Coefficients [H]:
|[D.1 020304060E0708]

Initial conditions:
jo

Cancel | Help | Apply |

Coefficient source
Specify the source of the filter coefficients:

®Specify via dialog — Enter the coefficients in the Coefficients
parameter in the dialog

® Input port — Accept the coefficients from port H. This port must have
the same rate as the input data port X

C62x Radix-8 Real FIR
|

Coefficients (H)

Designate the filter coefficients in vector format. This parameter is only
visible when Specify via dialog is selected for the Coefficient source
parameter. This parameter is tunable in simulation.

Initial conditions
If the initial conditions are

¢ All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length of this vector
must be one less than the number of coefficients.

¢ Different across channels, enter a matrix containing all initial conditions.
The number of rows of this matrix must be one less than the number of
coefficients, and the number of columns of this matrix must be equal to
the number of channels.

Initial conditions must be real.

Algorithm In simulation, the Radix-8 Real FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir r8. During code
generation, this block calls the DSP_fir_ r8 routine to produce optimized code.

See Also C62xComplex FIR, C62xGeneral Real FIR, C62xRadix-4 Real FIR,
C62xSymmetric Real FIR

5-75

C62x Real Forward Lattice All-Pole IIR

Purpose
Library

Description

Tl CEZx

g

IIRLAT

Real Fonuard Lattice
All-Fale IR

Dialog Box

5-76

Filter real input signal using lattice filter
C62x DSP Library — Filtering

The Real Forward Lattice All-Pole IIR block filters a real input signal using an
autoregressive forward lattice filter. The input and output signals must be the
same 16-bit signed fixed-point data type. The reflection coefficients must be
real and Q.15. The number of reflection coefficients must be greater than or
equal to four, and they must be in reversed order. Use an even number of
reflection coefficients to maximize the speed of your generated code.

The Real Forward Lattice All-Pole IIR block supports discrete sample times
and both little-endian and big-endian code generation.

Block Parameters: Real Forward Lattice All-Pole IR B

— Real Forward Lattice All-Pole (1R [mask] [link)

Filter a real input signal using an auto-regressive (&R] forward lattice filker.
The input %] and output [R] signals must be the zame 1E-bit gigned
fixed-point data twpe. The reflection coefficients (K] must be real and G.15.
The nurber of reflection coefficients must be greater than or equal to four,
and they muszt be in reversed order.

— Parameters

Coefficient source: | 5pecify via dialog j

Reflection coefficients:
I[-D.8228 0.2045 -0.0627 -0.0625]

Initial conditions:
o

Cancel | Help | Spply |

Coefficient source
Specify the source of the filter coefficients:

®Specify via dialog — Enter the coefficients in the Reflection
coefficients parameter in the dialog

® Input port — Accept the coefficients from port K

C62x Real Forward Lattice All-Pole IIR

Reflection coefficients
Designate the reflection coefficients of the filter in vector format. The
number of coefficients must be greater than or equal to four, and they must
be in reverse order. Using an even number of reflection coefficients
maximizes the speed of your generated code. This parameter is visible
when you select Specify via dialog for the Coefficient source
parameter. This parameter is tunable in simulation.

Initial conditions
If your block initial conditions are

¢ All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length (number of
elements) of this vector must be the same as the number of reflection
coefficients in your filter.

¢ Different across channels, enter a matrix containing all initial conditions.
The number of rows (initial conditions for one channel) of this matrix
must be the same as the number of reflection coefficients, and the number
of columns of this matrix must be equal to the number of channels.

Algorithm In simulation, the Real Forward Lattice All-Pole IIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_iirlat. During code

generation, this block calls the DSP_iirlat routine to produce optimized code.

See Also C62xReal IIR

5-77

C62x Real IIR

Purpose

Library

Description

Tl CEZx

s

IR

Real IR

Dialog Box

5-78

Filter real input signal using IIR filter
C62x DSP Library — Filtering

The Real IIR block filters a real input signal X using a real autoregressive
moving-average (ARMA) IIR Filter. This filter is implemented using a direct
form I structure.

There must be five AR coefficients and five MA coefficients. The first AR
coefficient is always assumed to be one. Inputs, coefficients, and output are
Q.15 data types.

The Real IIR block supports discrete sample times and both little-endian and
big-endian code generation.

Block Parameters: Real IIR B

—Real lIR [magk] [link]

Filter a real input zignal % uzing a real auto-regressive moving-average
[ARMA] IR flter, There must be five AR coefficients and five MA
coefficients; howewer, the first AR coefficient iz azzumed o be equal to
one. Inputs, coefficients, and output are all 3.15 data types.

— Parameters

Coefficient sources: ISpecif_lrl via dialog j

M [hurmeratar] coefficients:
n1ozn30408]

AR [denorinator] coefficisnts:
jmoioznzng

Input state initial conditions:
o

Output state initial conditions:
o

Cancel Help Spply

C62x Real IIR

Coefficient sources
Specify the source of the filter coefficients:

e Specify via dialog — Enter the coefficients in the MA (numerator)
coefficients and AR (denominator) coefficients parameters in the
dialog

® Input ports — Accept the coefficients from ports MA and AR

MA (numerator) coefficients

Designate the moving-average coefficients of the filter in vector format.
There must be five MA coefficients. This parameter is only visible when
Specify via dialog is selected for the Coefficient sources parameter.
This parameter is tunable in simulation.

AR (denominator) coefficients

Designate the autoregressive coefficients of the filter in vector format.
There must be five AR coefficients, however the first AR coefficient is
assumed to be equal to one. This parameter is only visible when Specify
via dialog is selected for the Coefficient sources parameter. This
parameter is tunable in simulation.

Input state initial conditions
If the input state initial conditions are

¢ All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter a vector
containing the input state initial conditions for one channel. The length
of this vector must be four.

¢ Different across channels, enter a matrix containing all input state initial
conditions. This matrix must have four rows.

Output state initial conditions
If the output state initial conditions are

¢ All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter a vector
containing the output state initial conditions for one channel. The length
of this vector must be four.

5-79

C62x Real IIR

Algorithm

See Also

5-80

¢ Different across channels, enter a matrix containing all output state
initial conditions. This matrix must have four rows.

In simulation, the Real IIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_iir. During code

generation, this block calls the DSP_iir routine to produce optimized code.

C62xReal Forward Lattice All-Pole IIR

C62x Reciprocal

Purpose
Library

Description

%3

RECIF1G

TI CE2
xF [

Reciprocal

Dialog Box

Algorithm

Fraction and exponent portions of reciprocal of real input signal
C62x DSP Library — Math and Matrices

The Reciprocal block computes the fractional (F) and exponential (E) portions
of the reciprocal of a real Q.15 input, such that the reciprocal of the input is
F*(2F). The fraction is Q.15 and the exponent is a 16-bit signed integer.

The Reciprocal block supports both continuous and discrete sample times. This
block also supports both little-endian and big-endian code generation.

Block Parameters: Reciprocal %]

Reciprocal [mask] [link]

Compute the fractional [F] and exponential [E] portions of the reciprocal of
a real 315 input, such that the reciprocal of the input is F2°E]. The
fraction iz (.15 and the exponent is a signed 16-bit integer.

Cancel | Help | Spply |

In simulation, the Reciprocal block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_recip16. During code
generation, this block calls the DSP_recip16 routine to produce optimized code.

5-81

C62x Symmetric Real FIR

Purpose

Library

Description

TI CEZx

¢

FIR_SvM

Symmetric Real FIR

Filter real input signal using FIR filter
C62x DSP Library — Filtering

The Symmetric Real FIR block filters a real input signal using a symmetric
real FIR filter. This filter is implemented using a direct form structure.

The number of input samples per channel must be even. The filter coefficients
are specified by a real vector H, which must be symmetric about its middle
element. The number of coefficients must be of the form 16k + 1, where k is a
positive integer. This block wraps overflows that occur. The input, coefficients,
and output are 16-bit signed fixed-point data types.

Intermediate multiplys and accumulates performed by this filter result in a
32-bit accumulator value. However, the Symmetric Real FIR block only
outputs 16 bits. You can choose to output 16 bits of the accumulator value in
one of the following ways.

Match input x

Output 16 bits of the accumulator value such that the output
has the same number of fractional bits as the input

Match coefficients h Output 16 bits of the accumulator value such that the output

has the same number of fractional bits as the coefficients

Match high 16 bits of acc. Output bits 31 - 16 of the accumulator value

Match high 16 bits of prod. Output bits 30 - 15 of the accumulator value

User-defined

Output 16 bits of the accumulator value such that the output
has the number of fractional bits specified in the Number of
fractional bits in output parameter

5-82

The Symmetric Real FIR block supports discrete sample times and only
little-endian code generation.

C62x Symmetric Real FIR

Dialog Box

Block Parameters: Symmetric Real FIR 4]

— Symmetric: Real FIR [magk] [link]

Filter a real input signal > uzing a symmetnc real FIR filter. The number of
input zamplez per channel must be even. The filker coefficients are
specified by a real vectar H, which must be symmetric about its middle
element. The number of elements in H must be of the form 16k+1 where k
iz a positive integer. Intermediate accumulations have 32 bits [b31:b0)
and uze wrap-around arithmetic. All input and output signals are signed
1E-bit fixed-point data typez.

— Parameters
Coefficient source: ISpecif}' via dialog j
Coefficients:
Joos17)
Set fractional bits in coefficients to: IEest precizion j

Hurmben af fractianal btz in coefficients:
10

St fractional bits in output te: |Match high 16 bits of product [630:b > |

MHurnber af fractional bits in outpu:
Jio

Initial conditions:
o

Cancel | Help | Spply |

Coefficient source
Specify the source of the filter coefficients:

e Specify via dialog — Enter the coefficients in the Coefficients
parameter in the dialog

® Input port — Accept the coefficients from port H

5-83

C62x Symmetric Real FIR

Coefficients

Enter the coefficients in vector format. This parameter is visible only when
Specify via dialog is specified for the Coefficient source parameter.
This parameter is tunable in simulation.

Set fractional bits in coefficients to
Specify the number of fractional bits in the filter coefficients:

eMatch input X — Sets the coefficients to have the same number of
fractional bits as the input

*Best precision — Sets the number of fractional bits of the coefficients
such that the coefficients are represented to the best precision possible

e User-defined — Sets the number of fractional bits in the coefficients
with the Number of fractional bits in coefficients parameter

This parameter is visible only when Specify via dialog is specified for
the Coefficient source parameter.

Number of fractional bits in coefficients
Specify the number of bits to the right of the binary point in the filter
coefficients. This parameter is visible only when Specify via dialog is
specified for the Coefficient source parameter, and is only enabled if
User-defined is specified for the Set fractional bits in coefficients to
parameter.

Set fractional bits in output to

Only 16 bits of the 32 accumulator bits are output from the block. Select
which 16 bits to output:

eMatch input X — Output the 16 bits of the accumulator value that cause
the number of fractional bits in the output to match the number of
fractional bits in input X

eMatch coefficients H— Output the 16 bits of the accumulator value
that cause the number of fractional bits in the output to match the
number of fractional bits in coefficients H

eMatch high bits of acc. (b31:b16) — Output the highest 16 bits of
the accumulator value

eMatch high bits of prod. (b30:b15) — Output the second-highest 16
bits of the accumulator value

5-84

C62x Symmetric Real FIR
|

e User-defined — Output the 16 bits of the accumulator value that cause
the number of fractional bits of the output to match the value specified in
the Number of fractional bits in output parameter

See Matrix Multiply “Examples” on page 5-66 for demonstrations of these
selections.

Number of fractional bits in output

Specify the number of bits to the right of the binary point in the output.
This parameter is only enabled if User-defined is selected for the Set
fractional bits in output to parameter.

Initial conditions
If the initial conditions are

¢ All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length of this vector
must be one less than the number of coefficients.

¢ Different across channels, enter a matrix containing all initial conditions.
The number of rows of this matrix must be one less than the number of

coefficients, and the number of columns of this matrix must be equal to
the number of channels.

Algorithm In simulation, the Symmetric Real FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir_sym. During code

generation, this block calls the DSP_fir_ symroutine to produce optimized code.

See Also C62xComplex FIR, C62xGeneral Real FIR, C62xRadix-4 Real FIR,
C62xRadix-8 Real FIR

5-85

C62x Vector Dot Product

Purpose
Library

Description

3 ‘;I'I CEZx
h

LOTRROD

“Wector Dot Product

Dialog Box

Algorithm

5-86

Vector dot product of real input signals
C62x DSP Library — Math and Matrices

The Vector Dot Product block computes the vector dot product of two real input
vectors, X and Y. The input vectors must have the same dimensions and must
be signed 16-bit fixed-point data types. The number of samples per channel of
the inputs must be even and greater than or equal to four. The output is a
signed 32-bit fixed-point scalar on each channel, and the number of fractional
bits of the output is equal to the sum of the number of fractional bits of the
inputs.

The Vector Dot Product block supports both continuous and discrete sample
times. This block also supports both little-endian and big-endian code
generation.

Block Parameters: Yector Dokt Product B

Wector Dot Product [mask] [link]

Compute the vector dot product of real inputs = and . Inputs must hawe
the same dimenzions, ahd the number of samples per channel must be
even and greater that or equal to four. Inputs must alzo be signed 16-bit
fixed-point data types. The output is a signed 32-kit fised-point scalar on
each channel.

Cancel | Help | Apply |

In simulation, the Vector Dot Product block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_dotprod. During code
generation, this block calls the DSP_dotprod routine to produce optimized code.

C62x Vector Maximum Index

Purpose
Library

Description
Tl CE2x

Wl

(LA

Wector Maximum Indesx

Dialog Box

Algorithm

Zero-based index of maximum value element in each input signal channel
C62x DSP Library — Math and Matrices

The Vector Maximum Index block computes the zero-based index of the
maximum value element in each channel (vector) of the input signal. The input
may be any real, 16-bit, signed fixed-point data type, and the number of
samples per input channel must be an integer multiple of three. The output
data type is a 32-bit signed integer.

The Vector Maximum Index block supports both continuous and discrete
sample times. This block also supports both little-endian and big-endian code
generation.

Block Parameters: Yector Maximum Index B

Yector Masimum Index [mazk] [link)

Compute the zero-based index of the maximum walue elemert in each
input channel [vector]. The number of input gamples per channel must be
a multiple of three, The input may be any real zigned 16-bit fised-point data
type. The output data type is a signed 32-bit integer.

Cancel | Help | Lpply |

In simulation, the Vector Maximum Index block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_maxidx. During code
generation, this block calls the DSP_maxidx routine to produce optimized code.

5-87

C62x Vector Maximum Value

Purpose
Library

Description
Tl CE2x
B |
Ao AL

Wector Maximum Walue

Dialog Box

Algorithm

See Also

5-88

Maximum value for each input signal channel
C62x DSP Library — Math and Matrices

The Vector Maximum Value block returns the maximum value in each channel
(vector) of the input signal. The input can be any real, 16-bit, signed fixed-point
data type. The number of samples on each input channel must be an integer
multiple of four and must be at least 16. The output data type matches the
input data type.

The Vector Maximum Value block supports both continuous and discrete
sample times. This block also supports both little-endian and big-endian code
generation.

Block Parameters: Yector Magrimum Yalue B

Yector Masimum Y alue [maszk] (link)

Compute the masimum walue for each channel [vector] of the input zsignal.
The number of zamplez per channel must be greater than or equal to
ziwkeen, and an integer multiple of four. The input and output data tppe
must match, and may be arw real signed 16-bit fixed-point data type.

Cancel | Help | Lpply |

In simulation, the Vector Maximum Value block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_maxval. During code
generation, this block calls the DSP_maxval routine to produce optimized code.

C62xVector Minimum Value

C62x Vector Minimum Value

Purpose
Library

Description
Tl CE2x

Al

MM AL

Wector Minimum Walue

Dialog Box

Algorithm

See Also

Minimum value for each input signal channel
C62x DSP Library — Math and Matrices

The Vector Minimum Value block returns the minimum value in each channel
of the input signal. The input may be any real, 16-bit, signed fixed-point data
type. The number of samples on each input channel must be an integer
multiple of four and must be at least 16. The output data type matches the
input data type.

The Vector Minimum Value block supports both continuous and discrete
sample times. This block also supports both little-endian and big-endian code
generation.

Block Parameters: Yector Minimum Yalue B

Yector Minimum Yalue [mask] [link)

Compute the minimum walue for each channel [vector] of the input signal.
The number of zamplez per channel must be greater than or equal to
ziwkeen, and an integer multiple of four. The input and output data tppe
must match, and may be arw real signed 16-bit fixed-point data type.

Cancel | Help | Lpply |

In simulation, the Vector Minimum Value block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_minval. During code
generation, this block calls the DSP_minval routine to produce optimized code.

C62xVector Maximum Value

5-89

C62x Vector Multiply

Purpose
Library

Description

3 ‘;I'I CEZx
h

ULz

Wector Multiply

Dialog Box

Algorithm

See Also

5-90

Element-wise multiplication on inputs
C62x DSP Library — Math and Matrices

The Vector Multiply block performs element-wise 32-bit multiplication of two
inputs X and Y. The total number of elements in each input must be even and
at least eight, and the inputs must have matching dimensions. The upper 32
bits of the 64-bit accumulator result are returned. All input and output
elements are 32-bit signed fixed-point data types.

The Vector Multiply block supports both continuous and discrete sample times.
This block also supports both little-endian and big-endian code generation.

Block Parameters: ¥ector Multiply 4]

Yector Multiply [mazk] [link]

Perform element-wise 32-bit multiplication on real inputs % and . The
upper 32 bits of the B4-bit rezult are returned. The inputs must hawe
matching dimenzions. The total number of elements it each input must be

even and at least eight. All input and output elements are signed 32-bit
fixed-point data bypes.

Cancel | Help | Lpply |

In simulation, the Vector Multiply block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_mul32. During code
generation, this block calls the DSP_mul32 routine to produce optimized code.

C62xMatrix Multiply

C62x Vector Negate

Purpose
Library

Description

TI CEZx

g

NE&32

Wector Megate

Dialog Box

Algorithm

Negate each input signal element
C62x DSP Library — Math and Matrices

The Vector Negate block negates each element of a 32-bit signed fixed-point
input signal. For real signals, the number of input elements must be even and
at least four. For complex signals, the number of input elements must be at
least two. The output is the same data type as the input.

The Vector Negate block supports both continuous and discrete sample times.
This block also supports both little-endian and big-endian code generation.

Block Parameters: Yector Negate %]

Wector Negate [mask] [link]

Megate each element of a signed 32-bit fixed-point input signal. Far real
zighalz, the number of input elements must be even and at least four. For
complex gsighals, the number of input elements must be at least bwo.

Cancel | Help | Spply |

In simulation, the Vector Negate block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_neg32. During code
generation, this block calls the DSP_neg32 routine to produce optimized code.

5-91

C62x Vector Sum of Squares

Purpose
Library

Description
TI CEZx
w |
WECSUMSR
Wector Sum of Squares

Dialog Box

Algorithm

5-92

Sum of squares over each real input channel
C62x DSP Library — Math and Matrices

The Vector Sum of Squares block computes the sum of squares over each
channel of a real input. The number of samples per input channel must be even
and at least eight, and the input must be a 16-bit signed fixed-point data type.
The output is a 32-bit signed fixed-point scalar on each channel. The number
of fractional bits of the output is twice the number of fractional bits of the input.

The Vector Sum of Squares block supports both continuous and discrete sample
times. This block also supports both little-endian and big-endian code
generation.

Block Parameters: ¥ector Sum of Squares 4]

Yector Sum of Squares [mask] [link]

Compute the sum of squares over each channel of a real input. The
number of gamples per channel must be even and at least eight. The input
must be a signed 16-bit fixed-point data twpe. The output i a signed 32-bit
fixed-point scalar on each channel.

Cancel | Help | Lpply |

In simulation, the Vector Sum of Squares block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_vecsumsg. During code
generation, this block calls the DSP_vecsumsq routine to produce optimized
code.

C62x Weighted Vector Sum

Purpose
Library

Description
" TICazx
E F
v n_WEC
Weighted Wector Sum

Dialog Box

Weighted sum of input vectors
C62x DSP Library — Math and Matrices

The Weighted Vector Sum block computes the weighted sum of two inputs, X
and Y, according to (W*X)+Y. Inputs may be vectors or frame-based matrices.
The number of samples per channel must be a multiple of four. Inputs, weights,
and output are Q.15 data types, and weights must be in the range -1 <W < 1.

The Weighted Vector Sum block supports both continuous and discrete sample
times. This block also supports both little-endian and big-endian code
generation.

Block Parameters: Weighted ¥Yector Sum 4]

—Weighted Vector Sum [maszk] [link]

Find the weighted zum W< + " of bwo input vectors. The number of

zamplez per channel must be a multiple of four. The weights, W, may be
supplied either through an input part ar by entering directly into the mazk
dialog. Input signals, weights, and output zsignals are all 0,15 data types.

— Parameters
Wweight source: ISpecif_l,l wia dialog j
Ww'eights [

Jos

Cancel | Help | Apply

Weight source
Specify the source of the weights:

e Specify via dialog — Enter the weights in the Weights (W) parameter
in the dialog

® Input port — Accept the weights from port W

5-93

C62x Weighted Vector Sum

Weights (W)
This parameter is visible only when Specify via dialog is specified for
the Weight source parameter. This parameter is tunable in simulation.
When the weights are

¢ All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length of this
vector must be a multiple of four.

¢ Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be a multiple of four,
and the number of columns of this matrix must be equal to the number
of channels.

Weights must be in the range -1 < W < 1.
Algorithm In simulation, the Weighted Vector Sum block is equivalent to the

TMS320C62x DSP Library assembly code function DSP_w_vec. During code
generation, this block calls the DSP_w_vec routine to produce optimized code.

5-94

C6416DSK

Purpose
Library

Description

C8418D5K

Configure model for C6416 DSP Starter Kit
Target Preferences in Embedded Target for TI C6000 DSP for TI DSP

Options on the block mask let you set features of code generation for your
C6416 DSP Starter Kit target. Adding this block to your Simulink model
provides access to the processor hardware settings you need to configure when
you generate code from Real-Time Workshop to run on the target.

Any model that you target to the C6416 DSK must include this block, or the
Custom C6000 target preferences block. Real-Time Workshop returns an error
message if a target preferences block is not present in your model.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to set the
target preferences for the model.

The processor and target options you specify on this block are:

¢ Target board information
® Memory mapping and layout

¢ Allocation of the various code sections, such as compiler, DSP/BIOS, and
custom sections.

Setting the options included in this dialogbox results in identifying your target
to Real-Time Workshop, Embedded Target for TI C6000 DSP, and Simulink,
and configuring the memory map for your target. Both steps are essential for
targeting any board that is custom or explicitly supported, such as the C6711
DSK or the DM642 EVM.

Unlike most other blocks, you cannot open the block dialog box for this block
until you add the block to a model. When you try to open the block dialog, the
block attempts to connect to your target. It cannot make the connection when
the block is in the library and returns an error message.

5-95

C6416DSK

Generating Code from Model Subsystems

Real-Time Workshop provides the ability to generate code from a selected
subsystem in a model. To generate code for the C6416 DSK from a subsystem,
the subsystem model must include a C6416DSK target preferences block.

Dialog Box
)} C6000 Target Preferences\C641 - ol x|

| Memary | Sections |DSF'IEIIOS |7

Board Properties

Board type: |cB416D5K

Device: IEME j

CPU clock speed: m hiHz

I Simulator [~ Enable High-Speed RTOX

Board Custorn Code

=

Include paths
Libraries
Initialize functions
Terminate functions

[[

Link to Code Cormposer Studio
CCS hoard name:

IDMEMS Cycle Accurate Simulator j
CCS processar narme;
|TvS320C6400 =l

0K | Apply Cancel | Help |

All target preferences block dialog boxes provide tabbed access to panes the
following panes with options you set for the target processor and target board:

¢ Board info — Select the target board and processor, set the clock speed, and
identify the target.

5-96

C6416DSK

® Memory — Set the memory allocation and layout on the target processor
(memory mapping).

® Sections — Determine the arrangement and location of the sections on the
target processor such as where to put the DSP/BIOS and compiler
information.

* DSP/BIOS — Specify how to configure tasking features of DSP/BIOS.

Board Info Pane

The following options appear on the Board Info pane for the C6000 Target
Preferences dialog.

Board Type

Lets you enter the type of board you are targeting with the model. You can
enter Custom to support any board based on one of the supported processors, or
enter the name of one of the supported boards, such as C6711DSK. If you are
using one of the explicitly supported boards, choose the target preferences
block for that board and this field shows the proper board type.

Device

Lets you select the type of processor on the board you select in CCS board
name. The processor type you enter determines the contents and setting for
options on the Memory and Sections panes in this dialog. If you are targeting
one of the supported boards, Device is disabled and the selected device is fixed.

CPU Clock Speed (MHz)

Shows the clock speed of the processor on your target. When you enter a value,
you are not changing the CPU clock rate. Instead, you are reporting the actual
rate. If the value you enter does not match the rate on the target, your model’s
real-time results may be wrong, and code profiling results are not correct.

Enter the actual clock rate the board uses. The rate you enter in this field does
not change the rate on the board. Setting CPU clock speed to the actual board
rate allows the code you generate to run correctly according to the actual clock
rate of the hardware.

When you generate code for C6000 targets from Simulink models, you may
encounter the software timer. The timer is invoked automatically to handle
and create interrupts to drive your model if either of the following conditions
occur:

¢ If your model does not include ADC or DAC blocks

5-97

C6416DSK

5-98

® When the processing rates in your model change (the model is multirate)

Correctly generating interrupts for your model depends on the clock rate of the
CPU on your target. You can change the rate with the DIP switches on the
board or from one of the software utilities provided by Texas Instruments.

For the timer software to calculate the interrupts correctly, Embedded Target
for TI C6000 DSP needs to know the actual clock rate of your target processor
as you configured it. CPU clock speed lets you tell the timer the rate at which
your target CPU runs, which is the rate to use to match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock speed to calculate
the time for each interrupt. For example, if your model includes a sine wave
generator block running at 1 KHz feeding a signal into an FIR filter block, the
timer needs to create interrupts to generate the sine wave samples at the
proper rate. Using the clock rate you choose, 100 MHz for example, the timer
calculates the sine generator interrupt period as follows for the sine block:

¢ Sine block rate = 1 KHz, or 0.001 s/sample
¢ CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires
100,000,000/1000 = 1 Sine block interrupt per 1,000,000 clock ticks

So you must report the correct clock rate or the interrupts come at the wrong
times and the results are incorrect.

Simulator

Select this option when you are targeting a simulator rather than a hardware
target. You must select Simulator to target your code to a C6000 simulator.
Enable High-Speed RTDX

Select this option to tell the code generation process to enable high-speed
RTDX for this model.

Board Custom Code

Entries in this group let you specify the locations of custom source files or
libraries or other functions. Five options provide access to text areas where you
enter files and file paths.

When you enter a path to a file, library, or other custom code, use the string

$(install dir)

C6416DSK

to refer to the CCS installation directory.

Enter new paths or files (custom code items) one to a line. Include the full path
to the file for libraries and source code. Board custom code options do not
support functions that use return arguments or values. Only functions of type
void fname void are valid as entries in these parameters.

® Source files — you enter the full paths to source code files to use with this
target. By default there are no entries in this parameter.

® Include paths — If you require additional files on your path, you add them
by typing the path into the text area. The default setting does not include
additional paths.

® | ibraries — these entries identify specific libraries that the target requires.
They appear on the list by default if required. Add more as you require by
entering the full path to the library with the library file in the text area. No
additional libraries appear here in the default configuration.

® Initialize functions — If your project requires an initialize function,
enter it here. By default, this is empty.

® Terminate functions —enter a function to run when a program terminates.
The default setting is not to include a specific termination function.

CCS Board Name

Contains a list of all the boards defined in CCS Setup. From the list of available
boards, select the one that you are targeting your code for.

CCS Processor Name

Lists the processors on the board you selected for targeting in CCS board
name. In most cases, only one name appears because the board has one
processor. In the multiprocessor case, you select the processor by name from
the list.

Memory Pane

When you target any board, you need to specify the layout of the physical
memory on your processor and board to determine how use it for your program.
For supported boards, the board-specific target preferences blocks set the
default memory map.

5-99

C6416DSK

5-100

RISIES

Board Info |

Physical memory

EOUMNL| Mo [sRan
SORAM
Address: I 0x00000000

Length: I 0x00100000
Contents: ICnde&Data vl

LI Add | Remuove |
Heap
[~ Create heap Heap size: 256
I Define label Heap label: [cegment_name |
L2 cache

[~ Enahle L2 cache

LY cache size: IEd kh 'l

0K Apply | Cancel | Help

The Memory pane contains memory options in three areas:

¢ Physical Memory — specifies the processor and board memory map

® Heap — specifies whether you use a heap and determines the size in words
¢ L2 Cache — enables the L2 cache (where available) and sets the size in kB
Be aware that these options may affect the options on the Sections pane. You

can make selections here that change how you configure options on the
Sections pane.

C6416DSK

Most of the information about memory segments and memory allocation is
available from the online help system for Code Composer Studio.

Physical Memory Options

This list shows the physical memory segments available on the board and
processor. By default, target preferences blocks show the memory segments
found on the selected processor. In addition, the Memory pane on
preconfigured target preferences blocks shows the memory segments available
on the board, but off of the processor. Target preferences blocks set default
starting addresses, lengths, and contents of the default memory segments.

The default memory segments for each processor and board are different. For
example:

¢ Custom boards based on C670x processors provide IPRAM and IDRAM
memory segments by default.

® C6711DSK boards provide SDRAM memory segments by default.

Name

When you highlight an entry on the Physical memory list, the name of the
entry appears here. To change the name of the existing memory segment, select
it in the Physical memory list and then type the new name here.

Note You cannot change the names of default processor memory segments.

To add a new physical memory segment to the list, click Add, replace the
temporary label in Name with the one to use, and press Return. Your new
segment appears on the list.

After you add the segment, you can configure the starting address, length, and
contents for the new segment. New segments start with code and data as the
type of content that can be stored in the segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as newsegment or
newSegment.

5-101

C6416DSK

5-102

Address

Address reports the starting address for the memory segment showing in
Name. Address entries are in hexadecimal format and limited only by the
board or processor memory.

When you are using a processor-specific preferences block, the starting address
shown is the default value. You can change the starting value by entering the
new value directly in Address when you select the memory segment to change.

Length

From the starting address, Length sets the length of the memory allocated to
the segment in Name. As in all memory entries, specify the length in
hexadecimal format, in minimum addressable data units (MADUs). For the
C6000 processor family, the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the length shown is
the default value. You can change the value by entering the new value directly
in this option.

Contents

Contents details the kind of program sections that you can store in the memory
segment in Name. As the processor type for the target preferences block
changes, the kinds of information you store in listed memory segments may
change. Generally, the Contents list contains these strings:

® Code — allow code to be stored in the memory segment in Name.
® Data — allow data to be stored in the memory segment in Name.

® Code and Data — allow code and data to be stored in the memory segment
in Name. When you add a new memory segment, this is the default setting
for the contents of the new element.

You may add or use as many segments of each type as you need, within the
limits of the memory on your processor.

Add

Click Add to add a new memory segment to the target memory map. When you
click Add, a new segment name appears, for example NEWMEM1, in Name and on
the Physical memory list. In Name, change the temporary name NEWMEM1 by
entering the new segment name. Entering the new name, or clicking Apply
updates the temporary name on the list to the name you enter.

C6416DSK

Remove

This option lets you remove a memory segment from the memory map. Select
the segment to remove on the Physical memory list and click Remove to
delete the segment.

Create Heap

If your processor supports using a heap, as does the C6711, for example,
selecting this option enables creating the heap, and enables the Heap size
option. Create heap is not available on processors that either do not provide
a heap or do not allow you to configure the heap.

Using this option you can create a heap in any memory segment on the
Physical memory list. Select the memory segment on the list and then select
Create heap to create a heap in the select segment. After you create the heap,
use the Heap size and Define label options to configure the heap.

The location of the heap in the memory segment is not under your control. The
only way to control the location of the heap in a segment is to make the segment
and the heap the same size. Otherwise, the compiler determines the location of
the heap in the segment.

Heap Size

After you select Create heap, this option lets you specify the size of the heap
in words. Enter the number of words in decimal format. When you enter the
heap size in decimal words, the system converts the decimal value to
hexadecimal format. You can enter the value directly in hexadecimal format as
well. Processors may support different maximum heap sizes.

Define Label

Selecting Create heap enables this option that allows you to name the heap.
Enter your label for the heap in the Heap label option.

Heap Label

Enabled by selecting Define label, you use this option to provide the label for
the heap. Any combination of characters is accepted for the label, except
reserved characters in C/C++ compilers.

Enable L2 Cache

C621x, C671x, and C641x processors support an L2 cache memory structure
that you can configure as SRAM and partial cache. Both the data memory and
the program share this second-level memory. C620x DSPs do not support L2

5-103

C6416DSK

5-104

cache memory and this option is not available when you choose one of the
C620x processors as your target.

If your processor supports the two-level memory scheme, this option enables
the L2 cache on the processor.

L2 Cache size

When you enable the L2 cache, use this list to determine the size of the cache
allotted. Select the size of the cache from the list.

Sections Pane

Options on this pane let you specify where various program sections should go
in memory. Program sections are distinct from memory segments — sections
are portions of the executable code stored in contiguous memory locations.
Commonly used sections include .text, .bss, .data, and .stack. Some sections
relate to the compiler, some to DSP/BIOS, and some can be custom sections as
you require.

For more information about program sections and objects, refer to the CCS
online help.

C6416DSK

|

{5
| DSF/BIOS Ii

4 | Description: ¢ code

Cormpiler sections

gwitch
hss

far Flacement: IISRAM .l
.cinit

pinit LI

DEF/BIOS sections/objects

Description: Argument buffer

.ghlinit
Aredata

.sg_sdata Placement: |ISRAR M
.obj

-hios LI

Data ohject placement: IISRAM 'l
Code ohject placement: IISRAM 'l
Customn sections

a | Mame: I
Placement: I|5RAM -l

LI Add | Remove |

0K | Apply | Cancel | Help |

Within this pane, you configure the allocation of sections for Compiler,
DSP/BIOS, and Custom needs.

This table provides brief definitions of the kinds of sections in the Compiler
sections, DSP/BIOS sections/objects, and Custom sections lists in the pane.

5-105

C6416DSK

All sections do not appear on all lists. The list the string appears on is shown

in the table.

String Section List Description of the Section Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the code

.bios DSP/BIOS DSP/BIOS code if you are using DSP/BIOS
options in your program

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global, defined
as far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS startup
initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the target
program can read

.pinit Compiler Load allocation of the table of global object
constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Compiler The global stack

5-106

C6416DSK

String Section List Description of the Section Contents

.switch Compiler Jump tables for switch statements in the
executable code

.sysdata DSP/BIOS Data about DSP/BIOS
.sysinit DSP/BIOS DSP/BIOS initialization startup code
.sysmem Compiler Dynamically allocated object in the code

containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants

.trcdata DSP/BIOS TRC mask variable and its initial value

section load allocation

You can learn more about memory sections and objects in your Code Composer
Studio online help.

Compiler Sections

During program compilation, the C6000 compiler produces both uninitialized
and initialized blocks of data and code. These blocks get allocated into memory
as required by the configuration of your system. On the Compiler sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections. The initialized
sections are:

® .cinit

e .const

® .switch

¢ _text (created by the assembler)

These sections are uninitialized:

® .bss (created by the assembler)
.far

.stack

.sysmem

5-107

C6416DSK

5-108

Other sections appear on the list as well:
® .data (created by the assembler)

® .cio

® .pinit

Note The C/C++ compiler does not use the .data section.

When you highlight a section on the list, Description shows a brief description
of the section. Also, Placement shows you where the section is presently
allocated in memory.

Description

Provides a brief explanation of the contents of the selected entry on the
Compiler sections list.

Placement

Shows you where the selected Compiler sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments as defined in
the physical memory map on the Memory pane. Select one of the listed memory
segments to allocate the highlighted compiler section to the segment.

DSP/BIOS Sections

During program compilation, DSP/BIOS produces both uninitialized and
initialized blocks of data and code. These blocks get allocated into memory as
required by the configuration of your system. On the DSP/BIOS sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections.

Description

Provides a brief explanation of the contents of the selected DSP/BIOS sections
list entry.

Placement

Shows where the selected DSP/BIOS sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments available on
C6000 processors, and changes based on the processor you are using.

C6416DSK

DSP/BIOS Object Placement

Distinct from the entries on the DSP/BIOS sections list, DSP/BIOS objects like
STS or LOG, if your project uses them, get placed in the memory segment you
select from the DSP/BIOS Object Placement list. All DSP/BIOS objects use
the same memory segment. You cannot select the location for individual
objects.

Custom Sections

When your program uses code or data sections that are not included in either
the Compiler sections or DSP/BIOS sections lists, you add the new sections
to this list. Initially, the Custom sections list contains no fixed entries, just a
placeholder for a section for you to define.

Name

You enter the name for your new section here. To add a new section, click Add.
Then replace the temporary name with the name to use. Although the
temporary name includes a period at the beginning you do not need to include
the period in your new name. Names are case sensitive. NewSection is not the
same as newsection, or newSection.

Placement

With your new section added to the Name list, select the memory segment to
which to add your new section. Within the restrictions imposed by the
hardware and compiler, you can select any segment that appears on the list.

Add

Clicking Add lets you configure a new entry to the list of custom sections. When
you click Add, the block provides a new temporary name in Name. Enter the

new section name to add the section to the Custom sections list. After typing
the new name, click Apply to add the new section to the list. You can also click
OK to add the section to the list and close the dialog.

Remove

To remove a section from the Custom sections list, select the section and click
Remove.

DSP/BIOS Pane

Options on this pane let you specify how to configure tasking features of
DSP/BIOS.

5-109

C6416DSK

5-110

The asynchronous task scheduler uses these options when you select the
Incorporate DSP/BIOS option in the model configuration set. By default,
Incorporate DSP/BIOS is selected and the Embedded Target for TI C6000
DSP creates separate DSP/BIOS tasks for each sample time in your Simulink
model.

DSP/BIOS tasking blocks provide parameters on their block dialogs so you can
specify the DSP/BIOS stack size and stack segment (where the stack is in
memory) for asynchronous tasks created by the DSP/BIOS Task and
DSP/BIOS Triggered Task blocks.

The code generation process uses the options on this pane to configure TSK
entries in the TSK Task Manager in CCS when it creates DSP/BIOS tasks.

When you clear the Incorporate DSP/BIOS option, you disable the options in
this pane. Your project does not include DSP/BIOS tasks, and Embedded
Target for TI C6000 DSP uses an interrupt-based scheduler.

For more information about tasks, refer to the Code Composer Studio online
help.

C6416DSK

|

) C6000 Target Preferences ' 2o x]

Board Info flemary | Sections

TSK Task Manager Properties

Default stack size (bytes): 095

Stack segment for static tasks: I'SRAM 'I
Stack segment for dynamic tasks: ISDRAM jv

{must have a heap allocated)

0K Apply Cancel Help

Within this pane, you configure the options for DSP/BIOS tasks, such as the
task manager and scheduler configuration. Note that the Sections pane
includes DSP/BIOS configuration options as well. The options specify the stack
use and locations on the stack for static and dynamic tasks.

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU context
during thread preemption for task threads. This option sets the size of the
DSP/BIOS stack in bytes allocated for each task. 4096 bytes is the default
value. You can set any size up to the limits for the processor. Set the stack

5-111

C6416DSK

size so that tasks do not use more memory than you allocate. While any
task can use more memory than the stack includes, this might cause the
task to write into other memory or data areas, possibly causing
unpredictable behavior.

Stack segment for static tasks
Use this option to specify where to allocate the stack for static tasks. Static
tasks are created whether or not they are needed for operation, compared
to dynamic tasks that the system creates as needed. Tasks that your
program uses often might be good candidates for static tasks. Infrequently
used tasks usually work best as dynamic tasks.

The list offers options SDRAM and ISRAM for locating the stack in memory,
with SDRAM as the default section. The Memory pane provide more options
for the physical memory on the processor.

Stack segment for dynamic tasks

Like static tasks, dynamic tasks use a stack as well. Setting this option
specifies where to locate the stack for dynamic tasks. In this case, SDRAM is
the only valid stack location in memory.

See Also Custom C6000

5-112

C6416 DSK ADC

Purpose
Library

Description

Line In
CGa416 DSK o
ALC

ADC

Digitized output from codec to processor
C6416 DSK Board Support in Embedded Target for TI C6000 DSP

Use the C6416 DSK ADC (analog-to-digital converter) block to capture and
digitize analog signals from the analog input jacks on the board. Placing an
C6416 DSK ADC block in your Simulink block diagram lets you use the AIC23
coder-decoder module (codec) on the C6416 DSK to convert an analog input
signal to a digital signal for the digital signal processor.

Most of the configuration options in the block affect the codec. However, the
Output data type, Samples per frame, and Scaling options relate to the
model you are using in Simulink, the signal processor on the board, or direct
memory access (DMA) on the board. In the following table, you find each option
listed with the C6416 DSK hardware affected.

Option Affected Hardware

ADC Source Codec

Mic Codec

Output data type TMS320C6416 digital signal processor
Samples per frame Direct memory access module

Sample Rate Codec

Scaling TMS320C6416 digital signal processor
Word Length Codec

You can select one of two input sources from the ADC source list:

¢ Line In — the codec accepts input from the line in connector (LINE IN) on
the board’s mounting bracket.

® Mic — the codec accepts input from the microphone connector (MIC IN) on
the board mounting bracket.

Use the Stereo check box to indicate whether the audio input is monaural or
stereo. Clear the check box to choose monaural audio input. Select the check

5-113

C6416 DSK ADC

5-114

box to enable stereo audio input. Monaural (mono) input is left channel only,
but the output sends left channel content to both the left and right output
channels; stereo uses the left and right channels on input and output.

The block uses frame-based processing of inputs, buffering the input data into
frames at the specified samples per frame rate. In Simulink, the block puts
monaural data into an N-element column vector. Stereo data input forms an
N-by-2 matrix with N data values and two stereo channels (left and right).

When the samples per frame setting is more than one, each frame of data is
either the N-element vector (monaural input) or N-by-2 matrix (stereo input).
For monaural input, the elements in each frame form the column vector of
input audio data. In the stereo format, the frame is the matrix of audio data
represented by the matrix rows and columns — the rows are the audio data
samples and the columns are the left and right audio channels.

When you select Mic for ADC source, you can select the +20 dB Mic gain boost
check box to add 20 dB to the microphone input signal before the codec digitizes
the signal.

C6416 DSK ADC

|

Dialog Box

E] Source Block Parameters: ADC il

—CB4H16DSK ADC (mask)

Configures the AIC23 codec and the TMS320C6416 penpherals to output a
stream of data collected from the analog jacks on the C6416 DSP Starter Kit
board.

Curing simulation, this block simply outputs zeros.

—Parameters

ADC scurce:ILine In
[~ +20 dB Mic gain boost

“ [Siereo,
Sampling rate: IBkHz

L«

Word length: | 16-bit

Output data type:l Integer

ENNERYERQEY

Scaling:l Mormalize

Samples per frame:
|64

[Inherit sample time

QK I Cancel Help

ADC source
The input source to the codec. Line Inis the default. Selecting Mic enables
the +20 dB Mic gain boost option.

+20 dB Mic gain boost
Boosts the input signal by +20dB when ADC source is Mic. Gain is applied
before analog-to-digital conversion.

Stereo

Indicates whether the input audio data is in monaural or stereo format.
Select the check box to enable stereo input. Clear the check box when you

5-115

C6416 DSK ADC

5-116

input monaural data. By default, stereo is enabled. Monaural data comes
from the right channel.

Sample rate
Sets the sample rate for the data output by the codec. Options are 8, 32,
44 .1, 48, and 96 kHz, with a default of 8 kHz.

Word length

Sets the length of each data word output from the codec, since the input is
analog. You choose from 16-, 20-, 24-, and 32-bit options.

Output data type
Selects the word length and shape of the data from the codec. By default,
double is selected. Options are Double, Single, and Integer. To process
single and double data types, the block uses emulated floating-point
instructions on the C6416 processor.

Scaling
Selects whether the codec data is unmodified, or normalized to the output
range to 1.0, based on the codec data format. Select either Normalize or
Integer from the list. Normalize is the default setting.

Samples per frame
Creates frame-based outputs from sample-based inputs. This parameter
specifies the number of samples of the signal the block buffers internally
before it sends the digitized signals, as a frame vector, to the next block in
the model. 64 samples per frame is the default setting. Notice that the
frame rate depends on the sample rate and frame size. For example, if your
input is 8000 samples per second, and you select 32 samples per frame, the
frame rate is 250 frames per second. The throughput remains the same at
8000 samples per second.

Inherit sample time
Selects whether the block inherits the sample time from the model base
rate/Simulink base rate as determined in the Solver options in
Configuration Parameters. Selecting Inherit sample time directs the
block to use the specified rate in model configuration. Entering -1
configures the block to accept the sample rate from the upstream HWI,
Task, or Triggered Task blocks.

C6416 DSK ADC
|

See Also C6416 DSK DAC

5-117

C6416 DSK DAC

Purpose

Library

Description

Ca416 DSK

DAC

5-118

DAC

Use codec to convert digital input to analog output
C6416 DSK Board Support in Embedded Target for TI C6000 DSP

Adding the C6416 DSK DAC (digital-to-analog converter) block to your
Simulink model provides the means to output an analog signal to the LINE
OUT connection on the C6416 DSK board. When you add the C6416 DSK DAC
block, the digital signal received by the codec is converted to an analog signal.
After converting the digital signal to analog form (digital-to-analog (D/A)
conversion), the codec sends the signal to the output jack.

One of the configuration options in the block affects the codec. The remaining
options relate to the model you are using in Simulink and the signal processor
on the board. In the following table, you find each option listed with the C6416
DSK hardware affected by your selection.

Option Affected Hardware

Overflow mode TMS320C6416 Digital Signal Processor
Scaling TMS320C6416 Digital Signal Processor
Word Length Codec

C6416 DSK DAC

Dialog Box

See Also

|

=] sink Block Parameters: DAC X|

—CE4160SK DAC (mask)

Configures the AIC23 codec and the TMS320C6416 peripherals to
send a stream of data to the output jack on the C6416 DSP Starter Kit

board.
—Parameters
Word length -

Sampling rate:ISkHz

Scaling:l MNormalize

Lel Lo Le

Overflow mode: I Wrap

OK I Cancel | Help | Apply |

Word length
Sets the DAC to interpret the input data word length. Without this setting,
the DAC cannot convert the digital data to analog correctly. The default
value is 16 bits, with options of 20, 24, and 32 bits. The word length you set
here should always match the ADC setting.

Sampling rate
Sets the sampling rate for the block output to the output ports on the
target. Select from the list of available rates.

Scaling
Selects whether the input to the codec represents unmodified data, or data
that has been normalized to the range +1.0. Matching the setting for the
C6416 DSK ADC block is usually appropriate here.

Overflow mode

Determines how the codec responds to data that is outside the range
specified by the Scaling parameter. You can choose Wrap or Saturate to
handle the result of an overflow in an operation. If efficient operation
matters, Wrap is the more efficient mode.

C6416 DSK ADC

5-119

C6416 DSK DIP Switch

Purpose Simulate or read DIP switches
Library C6416 DSK Board Support in Embedded Target for TI C6000 DSP
Description Added to your model, this block behaves differently in simulation than in code
generation and targeting.
C6416 DSK |
DIF Switch In Simulation — the options Switch 0, Switch 1, Switch 2, and Switch 3
Swritch generate output to simulate the settings of the user-defined dual inline pin

(DIP) switches on your C6416 DSK. Each option turns the associated DIP
switch on when you select it. The switches are independent of one another.

By defining the switches to represent actions on your target, DIP switches let
you modify the operation of your process by reconfiguring the switch settings.

Use the Data type to specify whether the DIP switch options output an integer
or a logical string of bits to represent the status of the switches. The table that
follows presents all the option setting combinations with the result of your
Data type selection.

Option Settings to Simulate the User DIP Switches on the C6416 DSK

Switch O Switch 1 Switch 2 Switch 3 Boolean Integer Output
(LSB) (MSB) Output

Cleared Cleared Cleared Cleared 0000 0
Selected Cleared Cleared Cleared 0001 1
Cleared Selected Cleared Cleared 0010 2
Selected Selected Cleared Cleared 0011 3
Cleared Cleared Selected Cleared 0100 4
Selected Cleared Selected Cleared 0101 5
Cleared Selected Selected Cleared 0110 6
Selected Selected Selected Cleared 0111 7
Cleared Cleared Cleared Selected 1000 8
Selected Cleared Cleared Selected 1001 9

5-120

C6416 DSK DIP Switch

Option Settings to Simulate the User DIP Switches on the C6416 DSK (Continued)

Switch O Switch 1 Switch 2 Switch 3 Boolean Integer Output
(LSB) (MSB) Output

Cleared Selected Cleared Selected 1010 10

Selected Selected Cleared Selected 1011 11

Cleared Cleared Selected Selected 1100 12

Selected Cleared Selected Selected 1101 13

Cleared Selected Selected Selected 1110 14

Selected Selected Selected Selected 1111 15

Selecting the Integer data type results in the switch settings generating
integers in the range from 0 to 15 (uint8), corresponding to converting the
string of individual switch settings to a decimal value. In the Boolean data
type, the output string presents the separate switch setting for each switch,
with the Switch 0 status represented by the least significant bit (LLSB) and the
status of Switch 3 represented by the most significant bit (MSB).

In Code generation and targeting — the code generated by the block reads
the physical switch settings of the user switches on the board and reports them
as shown in the table above. Your process uses the result in the same way
whether in simulation or in code generation. In code generation and when
running your application, the block code ignores the settings for Switch 0,
Switch 1, Switch 2 and Switch 3 in favor of reading the hardware switch
settings. When the block reads the DIP switches, it reports the results as either
a Boolean string or an integer value as the table below shows.

Output Values From The User DIP Switches on the C6416 DSK

Switch O Switch 1 Switch 2 Switch 3 Boolean Integer Output
(LSB) (MSB) Output

Off Off Off Off 0000 0

On Off Off Off 0001 1

Off On Off Off 0010 2

5-121

C6416 DSK DIP Switch

Output Values From The User DIP Switches on the C6416 DSK (Continued)

Switch O Switch 1 Switch 2 Switch 3 Boolean Integer Output
(LSB) (MSB) Output

On On Off Off 0011 3
Off Off On Off 0100 4
On Off On Off 0101 5
Off On On Off 0110 6
On On On Off 0111 7
Off Off Off On 1000 8
On Off Off On 1001 9
Off On Off On 1010 10
On On Off On 1011 11
Off Off On On 1100 12
On Off On On 1101 13
Off On On On 1110 14
On On On On 1111 15

5-122

C6416 DSK DIP Switch

Dialog Box

|

Block Parameters: Switch x|
—CE416 DSE DIP Switch [mazk)

Outputs ztate af uzer switches located on CE416 DSK board. In Boolean
mode, outputs a vector of 4 boolean values, with the least-significant bit

[LSE] first. In Integer mode, outputs &t integer from O to 7. For simulation,
checkbozes in the block dialog are used in place of the physical switches.

— Parameters
%

[~ Switch 1

[~ Switch 2

[~ Switch 3 [M5SE)

Drata bype: IBcu:Iean [~

Sample time:

f1.0

] I Cancel Help

Opening this dialog causes a running simulation to pause. Refer to “Changing
Source Block Parameters” in your online Simulink documentation for details.
Switch 0

Simulate the status of the user-defined DIP switch on the board.

Switch 1
Simulate the status of the user-defined DIP switch on the board.

Switch 2
Simulate the status of the user-defined DIP switch on the board.

Switch 3
Simulate the status of the user-defined DIP switch on the board.

Data type

Determines how the block reports the status of the user-defined DIP
switches. Boolean is the default, indicating that the output is a vector of
four logical values.

5-123

C6416 DSK DIP Switch

Each vector element represents the status of one DIP switch; the first is
Switch 0 and the fourth is Switch 8. The data type Integer converts the
logical string to an equivalent unsigned 8-bit (uint8) value. For example,
when the logical string generated by the switches is 0101, the conversion
yields 5 — the MSB is 0 and the LSB is 1.

Sample time
Specifies the time between samples of the signal. The default is 1 second
between samples, for a sample rate of one sample per second
(1/Sample time).

5-124

C6416 DSK LED

Purpose
Library

Description

Ca416 DSK
LED

LED

Dialog Box

Control LEDs
C6416 DSK Board Support in Embedded Target for TI C6000 DSP

Adding the C6416 DSK LED block to your Simulink block diagram lets you
trigger the user light emitting diodes (LED) on the C6416 DSK. To use the
block, send a nonzero real scalar to the block. The C6416 DSK LED block
controls all four user LEDs located on the C6416 DSK.

When you add this block to a model, and send an integer to the block input, the
block sets the LED state based on the input value it receives:

® When the block receives an input value equal to 0, the specified LEDs are
turned off (disabled), 0000

® When the block receives a nonzero input value, the specified LEDs are
turned on (enabled), 0001 to 1111

To activate the block, send it an integer in the range 0 to 15. Vectors do not
work to activate LEDs; nor do complex numbers as scalars or vectors.

For example, sending the value 6 turns on the diodes to show 0110
(off/on/on/off). 13 turns on the diodes to show 1101.

All LEDs maintain their state until the C6416 DSK LED block receives an
input value that changes the state. Enabled LEDs stay on until the block
receives an input value that turns the LEDs off; disabled LEDs stay off until
turned on. Resetting the C6416 DSK turns off all user LEDs. When you start
an application, the LEDs are turned off by default.

x
CE41EDSK LED (mask)

Controls the Uzer LED= an the CE41BDSE. during execution of generated
code. The input must be an integer between 0 and 15, and the binary
equivalent of that value will be reflected on the four uzer LEDs.

Cancel | Help | Lpply |

This dialog does not have any user-selectable options.

5-125

C6416 DSK RESET

Purpose
Library

Description

Resat
CA416 DSK

Resat

Dialog Box

5-126

Reset to initial conditions
C6416 DSK Board Support in Embedded Target for TI C6000 DSP

Double-clicking this block in a Simulink model window resets the C6416 DSK
that is running the executable code built from the model. When you
double-click the C6416 DSK RESET block, the block runs the software reset
function provided by CCS that resets the processor on your C6416 DSK.
Applications running on the board stop and the signal processor returns to the
initial conditions you defined.

Before you build and download your model, add the block to the model as

a stand-alone block. You do not need to connect the block to any block in the
model. When you double-click this block in the block library, it resets your
C6416 DSK. In other words, any time you double-click a C6416 DSK RESET
block, you reset your C6416 DSK.

This block does not have settable options and does not provide a user interface
dialog.

C6455DSK

Purpose
Library

Description

C8455D5K

Configure model for C6455 DSP Starter Kit
Target Preferences in Embedded Target for TI C6000 DSP for TI DSP

Options on the block mask let you set features of code generation for your
C6455 DSP Starter Kit target. Adding this block to your Simulink model
provides access to the processor hardware settings you need to configure when
you generate code from Real-Time Workshop to run on the target.

Any model that you target to the C6455 DSK must include this block or the
Custom C6000 target preferences block. Real-Time Workshop returns an error
message if a target preferences block is not present in your model.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to set the
target preferences for the model.

The processor and target options you specify on this block are:

¢ Target board information
® Memory mapping and layout

¢ Allocation of the various code sections, such as compiler, DSP/BIOS, and
custom sections.

Setting the options included in this dialogbox results in identifying your target
to Real-Time Workshop, Embedded Target for TI C6000 DSP, and Simulink,
and configuring the memory map for your target. Both steps are essential for
targeting any board that is custom or explicitly supported, such as the C6711
DSK or the DM642 EVM.

Unlike most other blocks, you cannot open the block dialog box for this block
until you add the block to a model. When you try to open the block dialog, the
block attempts to connect to your target. It cannot make the connection when
the block is in the library and returns an error message.

5-127

C6455DSK

Generating Code from Model Subsystems

Real-Time Workshop provides the ability to generate code from a selected
subsystem in a model. To generate code for the C6455 DSK from a subsystem,
the subsystem model must include a C6455DSK target preferences block.

Dialog Box

) C6000 Target Preferences\C6455 _ o]

71| Memory | Sections | pspiios |

Board Properties

Board type: |cB45D5K

Device: |5455 j

CPU clock speed: Iﬁ MWiHz

I Simulator [~ Enable High-Spead RTDX

Board Custom Code

Source files ;I H{Install_dirthoardsidskB455_ ;I
Include paths vl\csl_cB455\ing
Libraries o

${Install_dir\hoardsidskB455_
wivesl_cB4dxplus_inteline
F{install_dirf\boardsidskB455_
vliinclude
F{Install_dir)\hios_5_21'packa

LI gesitivvtdxibicB000 LI

Initialize functions
Terminate functions

Lirk to Code Composer Studio
CCS hoard name:

IDMBMS Cycle Accurate Simulator j
CCS processaor name;

{Tvs32008400 =l

OK | Apply Cancel | Help |

All target preferences block dialog boxes provide tabbed access to panes the
following panes with options you set for the target processor and target board:

¢ Board info — Select the target board and processor, set the clock speed, and
identify the target.

5-128

C6455DSK

® Memory — Set the memory allocation and layout on the target processor
(memory mapping).

® Sections — Determine the arrangement and location of the sections on the
target processor such as where to put the DSP/BIOS and compiler
information.

* DSP/BIOS — Specify how to configure tasking features of DSP/BIOS.

Board Info Pane

The following options appear on the Board Info pane for the C6000 Target
Preferences dialog box.

Board Type

Lets you enter the type of board you are targeting with the model. You can
enter Custom to support any board based on one of the supported processors, or
enter the name of one of the supported boards, such as C6711DSK. If you are
using one of the explicitly supported boards, choose the target preferences
block for that board and this field shows the proper board type.

Device

Lets you select the type of processor on the board you select in CCS board
name. The processor type you enter determines the contents and setting for
options on the Memory and Sections panes in this dialog box. If you are
targeting one of the supported boards, Device is disabled and the selected
device is fixed.

CPU Clock Speed (MHz)

Shows the clock speed of the processor on your target. When you enter a value,
you are not changing the CPU clock rate. Instead, you are reporting the actual
rate. If the value you enter does not match the rate on the target, your model’s
real-time results may be wrong, and code profiling results are not correct.

Enter the actual clock rate the board uses. The rate you enter in this field does
not change the rate on the board. Setting CPU clock speed to the actual board
rate allows the code you generate to run correctly according to the actual clock
rate of the hardware.

When you generate code for C6000 targets from Simulink models, you may
encounter the software timer. The timer is invoked automatically to handle
and create interrupts to drive your model if either of the following conditions
occur:

5-129

C6455DSK

5-130

¢ If your model does not include ADC or DAC blocks
® When the processing rates in your model change (the model is multirate)

Correctly generating interrupts for your model depends on the clock rate of the
CPU on your target. You can change the rate with the DIP switches on the
board or from one of the software utilities provided by Texas Instruments.

For the timer software to calculate the interrupts correctly, Embedded Target
for TI C6000 DSP needs to know the actual clock rate of your target processor
as you configured it. CPU clock speed lets you tell the timer the rate at which
your target CPU runs, which is the rate to use to match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock speed to calculate
the time for each interrupt. For example, if your model includes a sine wave
generator block running at 1 KHz feeding a signal into an FIR filter block, the
timer needs to create interrupts to generate the sine wave samples at the
proper rate. Using the clock rate you choose, 100 MHz for example, the timer
calculates the sine generator interrupt period as follows for the sine block:

¢ Sine block rate = 1 KHz, or 0.001 s/sample
® CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires
100,000,000/1000 = 1 Sine block interrupt per 1,000,000 clock ticks

So you must report the correct clock rate or the interrupts come at the wrong
times and the results are incorrect.

Simulator

Select this option when you are targeting a simulator rather than a hardware
target. You must select Simulator to target your code to a C6000 simulator.

Enable High-Speed RTDX

Select this option to tell the code generation process to enable high-speed
RTDX for this model.

Board Custom Code

Entries in this group let you specify the locations of custom source files or
libraries or other functions. Five options provide access to text areas where you
enter files and file paths.

When you enter a path to a file, library, or other custom code, use the string

C6455DSK

$(install_dir)

to refer to the CCS installation directory. The examples in the following figure
use the string.

Enter new paths or files (custom code items) one to a line. Include the full path
to the file for libraries and source code. Board custom code options do not
support functions that use return arguments or values. Only functions of type
void fname void are valid as entries in these parameters.

® Source files — Enter the full paths to source code files to use with this
target. The default is blank.

® Include paths — C6455 DSK requires some additional files to work
correctly. When you add this block to your model, the default include paths
appear as shown in the following figure. These entries include chip support
libraries, a BIOS addition, and an RTDX library. All are necessary for use.
You can add further paths by typing the path into the text area.

Board Customn Code

Source files 4 | |$(install_dinthoards\dskbdas_ ;I
§|r'|::|l_ldE naths] witcsl cB455NNC

Libraries S(install_diftboardsidskB455_
Initialize functions wlicsl_cB4xplus_intciinc
Terminate functions $(install_dintboards\dskBass_
wliinclude
$(install_dithios_5_21\packa

LI gesititrtdx\ibtcE000 LI

e Libraries — These entries identify specific libraries that the target
requires. They appear on the list by default, as shown on the following figure.

5-131

C6455DSK

Board Customn Code

Source files d $(InStall_dir)\buards\dsk8455_:I
Include paths wlicsl_cBduplus_intchlibicsl o

Bdxplus_intc lib
$(install_dinthoards\dskB455_

wlcsl_cB4554 ke sl_cB455 ik
$(install_dinboardsidskB455_

wlilibvdskB455hs] lib

[=

Initialize functions
Terminate functions

® Initialize functions — C6455 DSK targets require a specific
initialization function, listed here as DSK6455_init. Enter others if needed.

Board Custom Code

Source files a | |D3KB455 init -
Include paths _I - J
Libraries
Anitialize functions
Terminate functions

[[]

® Terminate functions — Enter a function to run when a program
terminates. The default setting is not to include a specific termination
function.

CCS Board Name

Contains a list of all the boards defined in CCS Setup. From the list of available
boards, select the one for which you are targeting your code.

CCS Processor Name

Lists the processors on the board you selected for targeting in CCS board
name. In most cases, only one name appears because the board has one

processor. In the multiprocessor case, you select the processor by name from
the list.

5-132

C6455DSK

|

Memory Pane

When you target any board, you need to specify the layout of the physical
memory on your processor and board to determine how use it for your program.
For supported boards, the board-specific target preferences blocks set the
default memory map.

} C6000 Target Preferences\C6455 _' 8 ||:||£|

temory | Sections | DSP/EIOS |7
Physical memaory
ran Py L R
DDR
Addregs: I 0x00800000
Length: I 0x00200000
Contents: ICnde&Data .|

Board Info |

LI Add | Rermove |
Heap
™ Create heap Heap size: 256
I~ Defing lakel Heap label: IW
L2 cache

[~ Enahble L2 cache

L2 cache size; |32 kb 'l

0K Apply | Cancel | Help

The Memory pane contains memory options in three areas as shown in the
preceding figure:

® Physical Memory — Specifies the processor and board memory map

5-133

C6455DSK

5-134

® Heap — Specifies whether you use a heap and determines the size in words
® L2 Cache — Enables the L2 cache (where available) and sets the size in kB

Be aware that these options may affect the options on the Sections pane. You
can make selections here that change how you configure options on the
Sections pane.

Most of the information about memory segments and memory allocation is
available from the online help system for Code Composer Studio.

Physical Memory Options

This list shows the physical memory segments available on the board and
processor. By default, target preferences blocks show the memory segments
found on the selected processor. In addition, the Memory pane on
preconfigured target preferences blocks shows the memory segments available
on the board, but off of the processor. Target preferences blocks set default
starting addresses, lengths, and contents of the default memory segments.

The default memory segments for each processor and board are different. For
example:

® Custom boards based on C670x processors provide IPRAM and IDRAM
memory segments by default.

¢ C6711DSK boards provide SDRAM memory segments by default.

Name

When you highlight an entry on the Physical memory list, the name of the
entry appears in this field. To change the name of the existing memory
segment, select it in the Physical memory list and then type the new name
here.

Note You cannot change the names of default processor memory segments.

To add a new physical memory segment to the list, click Add, replace the
temporary label in Name with the one to use, and press Return. Your new
segment appears on the list.

C6455DSK

After you add the segment, you can configure the starting address, length, and
contents for the new segment. New segments start with code and data as the
type of content that can be stored in the segment (refer to the Contents option).

Note Names are case sensitive. NewSegment is not the same as newsegment or
newSegment.

Address

Address reports the starting address for the memory segment showing in
Name. Address entries are in hexadecimal format and limited only by the
board or processor memory.

When you are using a processor-specific preferences block, the starting address
shown is the default value. You can change the starting value by entering the
new value directly in Address when you select the memory segment to change.

Length
From the starting address, Length sets the length of the memory allocated to
the segment in Name. As in all memory entries, specify the length in

hexadecimal format, in minimum addressable data units (MADUs). For the
C6000 processor family, the MADU is 8 bytes (one word).

When you are using a processor-specific preferences block, the length shown is
the default value. You can change the value by entering the new value directly
in this option.

Contents

Contents details the kind of program sections that you can store in the memory
segment in Name. As the processor type for the target preferences block
changes, the kinds of information you store in listed memory segments may
change. Generally, the Contents list contains these strings:

® Code — Allow code to be stored in the memory segment in Name.

® Data — Allow data to be stored in the memory segment in Name.

® Code and Data — Allow code and data to be stored in the memory segment
in Name. When you add a new memory segment, this is the default setting
for the contents of the new element.

5-135

C6455DSK

5-136

You may add or use as many segments of each type as you need, within the
limits of the memory on your processor.

Add

Click Add to add a new memory segment to the target memory map. When you
click Add, a new segment name appears, for example NEWMEM1, in Name and on
the Physical memory list. In Name, change the temporary name NEWMEM1 by
entering the new segment name. Enter the new name or click Apply to update
the temporary name on the list to the name you want.

Remove

This option lets you remove a memory segment from the memory map. Select
the segment to remove on the Physical memory list and click Remove to
delete the segment.

Create Heap

If your processor supports using a heap, as does the C6711, for example,
selecting this option allows you to create the heap, and enables the Heap size
option. Create heap is not available on processors that either do not provide
a heap or do not allow you to configure the heap.

Using this option, you can create a heap in any memory segment on the
Physical memory list. Select the memory segment on the list and then select
Create heap to create a heap in the select segment. After you create the heap,
use the Heap size and Define label options to configure the heap.

Note The location of the heap in the memory segment is not under your
control. The only way to control the location of the heap in a segment is to
make the segment and the heap the same size. Otherwise, the compiler
determines the location of the heap in the segment.

Heap Size

After you select Create heap, this option lets you specify the size of the heap
in words. Enter the number of words in decimal format. When you enter the
heap size in decimal words, the system converts the decimal value to
hexadecimal format. You can enter the value directly in hexadecimal format as
well. Processors may support different maximum heap sizes.

C6455DSK

Define Label

Selecting Create heap allows you to name the heap. Enter your label for the
heap in Heap Label.

Heap Label

You enable this option by selecting Define label. Use this option to provide the
label for the heap. Any combination of characters is accepted for the label,
except reserved characters in C/C++ compilers.

Enable L2 Cache

C621x, C671x, and C641x processors support an L2 cache memory structure
that you can configure as SRAM and partial cache. Both the data memory and
the program share this second-level memory.

If your processor supports the two-level memory scheme, this option enables
the L2 cache on the processor.

L2 Cache size

When you enable the L2 cache, use this list to determine the size of the cache
allotted. Select the size of the cache from the list.

Sections Pane

Options on this pane let you specify where various program sections should go
in memory. Program sections are distinct from memory segments — sections
are portions of the executable code stored in contiguous memory locations.
Commonly used sections include .text, .bss, .data, and .stack. Some sections
relate to the compiler, some to DSP/BIOS, and some can be custom sections as
you require.

For more information about program sections and objects, refer to the CCS
online help.

5-137

C6455DSK

) C6000 Target Preferences\C6455DS! _ o] x]

| DSP/BIOS |7

4 | Description: ¢ code

Board Info | Memary

Cormpiler sections

gwitch
hss

far Flacement: IlRAM .l
_cinit
pinit LI

DEF/BIOS sections/objects

Description: Argument buffer
.gblinit
trodata

.sg_sdata Placement: IIRAM 'l
.obj

-hios LI

Data ohject placement: IIRAM 'l
Code ohject placement: IIRAM 'l
Customn sections

a | Mame: I
Placement: I|RAM -l

LI Add | Remove |

Ok | Apply | Cancel | Help |

Within the pane shown in this figure, you configure the allocation of sections
for Compiler, DSP/BIOS, and Custom needs.

This table provides brief definitions of the kinds of sections in the Compiler
sections, DSP/BIOS sections/objects, and Custom sections lists in the pane.

5-138

C6455DSK

All sections do not appear on all lists. The list the string appears on is shown

in the table.

String Section List Description of the Section Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the code

.bios DSP/BIOS DSP/BIOS code if you are using DSP/BIOS
options in your program

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global, defined
as far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS startup
initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the target
program can read

.pinit Compiler Load allocation of the table of global object
constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Compiler The global stack

5-139

C6455DSK

5-140

String Section List Description of the Section Contents

.switch Compiler Jump tables for switch statements in the
executable code

.sysdata DSP/BIOS Data about DSP/BIOS
.sysinit DSP/BIOS DSP/BIOS initialization startup code
.sysmem Compiler Dynamically allocated object in the code

containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants

.trcdata DSP/BIOS TRC mask variable and its initial value

section load allocation

You can learn more about memory sections and objects in your Code Composer
Studio online help.

Compiler Sections

During program compilation, the C6000 compiler produces both uninitialized
and initialized blocks of data and code. These blocks get allocated into memory
as required by the configuration of your system. On the Compiler sections list,
you find both initialized sections (sections that contain data or executable code)
and uninitialized sections (sections that reserve space in memory). The
initialized sections are:

® .cinit

e .const

® .switch

e _text (created by the assembler)

These sections are uninitialized:

.bss (created by the assembler)
.far

.stack

.sysmem

C6455DSK

Other sections appear on the list as well:
® .data (created by the assembler)

® .cio

® .pinit

Note The C/C++ compiler does not use the .data section.

When you highlight a section on the list, Description shows a brief description
of the section. Also, Placement shows you where the section is presently
allocated in memory.

Description

Provides a brief explanation of the contents of the selected entry on the
Compiler sections list.

Placement

Shows you where the selected Compiler sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments as defined in
the physical memory map on the Memory pane. Select one of the listed memory
segments to allocate the highlighted compiler section to the segment.

DSP/BIOS Sections

During program compilation, DSP/BIOS produces both uninitialized and
initialized blocks of data and code. These blocks get allocated into memory as
required by the configuration of your system. On the DSP/BIOS sections list,
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections.

Description

Provides a brief explanation of the contents of the selected DSP/BIOS sections
list entry.

Placement

Shows where the selected DSP/BIOS sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments available on
C6000 processors and changes based on the processor you are using.

5-141

C6455DSK

5-142

DSP/BIOS Object Placement

These objects are distinct from the entries on the DSP/BIOS sections list.
DSP/BIOS objects such as STS or LOG are placed in the memory segment you
select from the DSP/BIOS Object Placement list. All DSP/BIOS objects use
the same memory segment. You cannot select the location for individual
objects.

Custom Sections

When your program uses code or data sections that are not included in either
the Compiler sections or DSP/BIOS sections lists, you add the new sections
to this list. Initially, the Custom sections list contains no fixed entries, but
instead, a placeholder for a section for you to define.

Name

You enter the name for your new section in this field. To add a new section,
click Add. Then, replace the temporary name with the name you want to use.
Although the temporary name includes a period at the beginning you do not
need to include the period in your new name. Names are case sensitive.
NewSection is not the same as newsection, or newSection.

Placement

With your new section added to the Name list, select the memory segment to
which to add your new section. Within the restrictions imposed by the
hardware and compiler, you can select any segment that appears on the list.

Add

Clicking Add lets you configure a new entry to the list of custom sections. When
you click Add, the block provides a new temporary name in Name. Enter a new
section name to add the section to the Custom sections list. After typing the
new name, click Apply to add the new section to the list. You can also click OK
to add the section to the list and close the dialog box.

Remove

To remove a section from the Custom sections list, select the section and click
Remove.

DSP/BIOS Pane

Options on this pane let you specify how to configure tasking features of
DSP/BIOS.

C6455DSK

The asynchronous task scheduler uses these options when you select the
Incorporate DSP/BIOS option in the model configuration set. By default,
Incorporate DSP/BIOS is selected and the Embedded Target for TI C6000
DSP creates separate DSP/BIOS tasks for each sample time in your Simulink
model.

DSP/BIOS tasking blocks provide parameters on their dialog boxes so you can
specify the DSP/BIOS stack size and stack segment (where the stack is in
memory) for asynchronous tasks created by the DSP/BIOS Task and
DSP/BIOS Triggered Task blocks.

The code generation process uses the options on this pane to configure TSK
entries in the TSK Task Manager in CCS when it creates DSP/BIOS tasks.

When you clear the Incorporate DSP/BIOS option, you disable the options in
this pane. Your project does not include DSP/BIOS tasks, and Embedded
Target for TI C6000 DSP uses an interrupt-based scheduler.

5-143

C6455DSK

5-144

} C6000 Target Preferences\C64 - |zl %]

|7.

Board Info Memary | Sections |

TSK Task Manager Properties

Default stack size (bytes): 095

Stack segment for static tasks: I'RAM 'I
Stack segment for dynamic tasks: IDDR jv

{must have a heap allocated)

Ok Apply Cancel Help

In the pane shown in this figure, you configure the options for DSP/BIOS tasks,
such as the task manager and scheduler configuration. The Sections pane
includes DSP/BIOS configuration options as well. The options specify the stack
use and locations on the stack for static and dynamic tasks.

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU context
during thread preemption for task threads. This option sets the size of the
DSP/BIOS stack in bytes allocated for each task. A value of 4096 bytes is
the default. You can set any size up to the limits for the processor. Set the

C6455DSK
|

stack size so that tasks do not use more memory than you allocate. While
any task can use more memory than the stack includes, failure to set the
stack size might cause the task to write into other memory or data areas,
possibly causing unpredictable behavior.

Stack segment for static tasks

Use this option to specify where to allocate the stack for static tasks. Static
tasks are created whether or not they are needed for operation, compared
to dynamic tasks that the system creates as needed. Tasks that your
program uses often might be good candidates for static tasks. However,
infrequently used tasks usually work best as dynamic tasks.

The list offers options SDRAM and ISRAM for locating the stack in memory,
with SDRAM as the default section. The Memory pane provide more options
for the physical memory on the processor.

Stack segment for dynamic tasks

Like static tasks, dynamic tasks use a stack as well. Setting this option
specifies where to locate the stack for dynamic tasks. In this case, SDRAM is
the only valid stack location in memory.

See Also Custom C6000

5-145

C64x Autocorrelation

Purpose Autocorrelate input vector or frame-based matrix
Library C64x DSP Library — Math and Matrices
Descripl'ion The C64x Autocorrelation block computes the autocorrelation of an input

vector or frame-based matrix. For frame-based inputs, the autocorrelation is
'¢ L computed along each of the input’s columns. The number of samples in the
AUTOCOR input channels must be an integer multiple of eight. Input and output signals
Autocomelation are real and Q.15.

Autocorrelation blocks support discrete sample times and little-endian code
generation only.

o
Dialog Box
Block Parameters: Autocorrelation x|

— Autocomelation [mask)

Compute the autocomrelation of vectors or frame-based matrices. For
frame-bazed inputs, compute along the input's columns. Input channels
muszt have a multiple of eight zamples. [nput and output are real and 0,15,

Wwhen set to 'Compute all non-negative lags'. compute using lags in the
range [0, lengthlinput]-1]. Othemwize, according to 't azimum non-negative
lag’, compute uzing lags in the range [0, maxLag). The value of maxLag
must be such that masLag+1 iz divisible by 4, i.e.. maxLag is a member of
the set {3, 7.11.15. .. L

— Parameters

¥ Compute all non-negative lags

b awimium nen-negative lag (less than mput length]:

I

Ok, I Cancel | Help | Apply |

Compute all non-negative lags
When you select this parameter, the autocorrelation is performed using all
nonnegative lags, where the number of lags is one less than the length of
the input. The lags produced are therefore in the range
[0, 1ength(input)-1]. When this parameter is not selected, you specify the
lags used in Maximum non-negative lag (less than input length).

Maximum non-negative lag (less than input length)

Specify the maximum lag (maxLag) the block should use in performing the
autocorrelation. The lags used are in the range [0, maxLag]. The maximum

5-146

C64x Autocorrelation

lag must be odd, and (maxLag+1) must be divisible by 4, such as maxLag
equal to 3, 7, or 19. This parameter is enabled when you clear the
Compute all non-negative lags parameter.

Algorithm In simulation, the Autocorrelation block is equivalent to the

TMS320C64x DSP Library assembly code function DSP_autocor. During code
generation, this block calls the DSP_autocor routine to produce optimized code.

5-147

C64x Bit Reverse

Purpose
Library

Description

T CE4x

%

BITREWV _CPLX

Bil Rever=s

Dialog Box

Algorithm

Examples

5-148

Bit-reverse elements of each complex input signal channel
C64x DSP Library — Transforms

The C64x Bit Reverse block bit-reverses the elements of each channel of

a complex input signal X. The Bit Reverse block is used primarily to provide
correctly-ordered inputs and outputs to or from blocks that perform FFTs.
Inputs to this block must be 16-bit fixed-point data types. Input vector lengths
must be a power of two. Because you use this block with FFT blocks the input
vector length must be a power of two.

The Bit Reverse block supports discrete sample times and little-endian code
generation only.

Block Parameters: Bit Reverse x|

Bit Reverse [mask)

Bit reverse the positionz of the elements of a complex input vwector. The
length of the input wector must be a power of bwo. Inputs can be any
16-bit fixed-paint data type.

Cancel | Help | Lpply |

In simulation, the Bit Reverse block is equivalent to the

TMS320C64x DSP Library assembly code function DSP_bitrev_cplx. During
code generation, this block calls the DSP_bitrev_cplx routine to produce
optimized code.

The Bit Reverse block reorders the output of the C64x Radix-2 FFT in the
model below to natural order.

w2 stin 16 _Enif (o) [16x1 RADIXZ stin 16 _Enif (o) [16x1 BITREV_CPLX stin 16 _Enif (o) [16x1

Constant Radix2 FFT Bit Reverse Signal Ta
Matepaca?

The following code calculates the same FFT in the workspace. The output from
this calculation, y2, is displayed side-by-side with the output from the model, c.
The outputs match, showing that the Bit Reverse block reorders the Radix-2
FFT output to natural order:

C64x Bit Reverse

See Also

x
N
1l

= zeros(n,
xr(2) = 0.5;

= zeros(n,
complex(xr, xi);

y2 = fft(x2);

y €l
0.5000
0.4619
0.3536
0.1913

0
-0.1913
-0.3536
-0.4619
-0.5000
-0.4619
-0.3536
-0.1913

0
0.1913
0.3536
0.4619

C64x Radix-2 FFT, C64x Radix-2 IFFT

+ + + 4+ + + +
Oo0oooooo

(el elNeNeolNolNeNol

)5

)5

.19131
.35361
.46191
.50001
.46191
.35361
.19131

.19131
.35361
.46191
.50001
.46191
.35361
.19131

o O oo

o o

.5000
.4619
.3535
.1913

0

.1913
-0.
-0.
-0.
-0.
-0.
-0.

3535
4619
5000
4619
3535
1913

0

.1913
.3535
.4619

+ + + + + + +
Ooooooo

O OO OoOOo0OOoOOo

.19131
.35351
.46191
.50001
.46191
.35351
.19131

.19131
.35351
.46191
.50001
.46191
.35351
.19131

5-149

C64x Block Exponent

Purpose
Library

Description

%

EEXF

Block Exponant

Dialog Box

Algorithm

5-150

Minimum number of extra sign bits) in each input channel
C64x DSP Library — Math and Matrices

The C64x Block Exponent block first computes the number of extra sign bits of
all values in each channel of an input signal, and then returns the minimum
number of sign bits found in each channel. The number of elements in each
input channel must be a multiple of eight. Input elements must be 32-bit
signed fixed-point data types. The output is a vector of 16-bit integers — one
integer for each channel of the input signal.

This block is useful for determining whether every sample in a channel is using
extra sign bits. If so, you can scale your signal by the minimum number of extra
sign bits to eliminate the common extra bits. This increases the representable
precision and decreases the representable range of the signal.

Block Exponent blocks support both continuous and discrete sample times.
This block also supports both little-endian and big-endian code generation.

Block Parameters: Block Exponent x|

Black Exponent [maszk)

Compute the exponents [number of extra gign bitz) of all values in each
chanrel of the input zignal and return the minimum exponent found in
each channel. The number of elements in each input channel must be a
multiple of eight. &ll input elements must be zsigned 32-bit fixed-point data
types. The block outputs a wector of 16-bit integers, one integer for each
channel of the input zignal.

Cancel | Help | Apply |

In simulation, the Block Exponent block is equivalent to the

TMS320C64x DSP Library assembly code function DSP_bexp. During code
generation, this block calls the DSP_bexp routine given to produce optimized
code.

C64x Complex FIR

Purpose Filter complex input signal using complex FIR filter
Library C64x DSP Library — Filtering
Description The C64x Complex FIR block filters a complex input signal X using a complex
FIR filter. This filter is implemented using a direct form structure. Each input
¢ i channel must contain an integer multiple of four samples, with four samples as
. the minimum required.
FIR_CPLY

Comphes FIR The number of FIR filter coefficients, which are given as elements of the input

vector H, must be even. The product of the number of elements of X and the
number of elements of H must be at least four. Inputs, coefficients, and outputs
are all Q.15 data types. For each channel, the number of input elements must
be a multiple of four.

The Complex FIR block supports discrete sample times and little-endian code
generation only.

Dialog Box
=

— Complex FIR [mazk)

Filter a comples input sighal », having M samples per channel, using &
complex FIF filker. The filter coefficients are specified by a complex vector
H, with an even number of elements MH. The number of input samples
per channel must be a multiple of 4. Input gignale, coefficients, and output
sighals are all (.15 data twpes.

— Parameters

Coefficient source: [l iReERE

Coefficients [H]:
|complex([0.1,0.2, 0.2, 0.1)

Initial conditions:

|0

(] 4 I Cancel | Help | Lpply |

Coefficient source
Specify the source of the filter coefficients:

e Specify via dialog — Enter the coefficients in the Coefficients (H)
parameter in the dialog box

5-151

C64x Complex FIR

e Input port — Accept the coefficients from port H. This port must have
the same rate as the input data port X. Choosing this option adds an input
port to the block.

Coefficients (H)
Designate the filter coefficients in vector format. There must be an even
number of coefficients. This parameter is visible only when Specify via
dialog is selected for the Coefficient source parameter. This parameter
is tunable in simulation.

Initial conditions
Lets you provide initial conditions for the filter. If your initial conditions for
the channels are

¢ All the same, enter a scalar that applies to all channels.

¢ Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. These conditions then
apply to all channels. The length of this vector must be one less than the
number of coefficients.

¢ Different across channels, enter a matrix containing all initial conditions
for every individual channel. The number of rows of this matrix must be
one less than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

You may enter real-valued initial conditions. Zero-valued imaginary parts
will be assumed.

Algorithm In simulation, the Complex FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir_cplx. During code
generation, this block calls the DSP_fir_ cplx routine to produce optimized
code.

See Also C64x General Real FIR, C64x Radix-4 Real FIR, C64x Radix-8 Real FIR,
C64x Symmetric Real FIR

5-152

C64x Convert Floating-Point to Q.15

Purpose
Library

Description

Tl Cdx

¢

FLTOQ15

Convert Floating-

Faoint to 215

Dialog Box

Algorithm

See Also

Convert floating-point signal to Q.15 fixed-point
C64x DSP Library — Conversions

The C64x Convert Floating-Point to Q.15 block converts a single-precision
floating-point input signal to a Q.15 output signal. Input can be real or
complex. For real inputs, the number of input samples must be even.

The Convert Floating-Point to Q.15 block supports both continuous and
discrete sample times. This block also supports both little-endian and
big-endian code generation.

Block Parameters: Convert Floating- Poi =|

Convert Floating-Point to .15 [mask]

Conwert a single-precizion floating-point zignal to a 0.15 signal. Both real
and complex inputs are allowed. However, for real inputs only, the tatal
number of input samples must be even.

Cancel | Help | Spply |

In simulation, the Convert Floating-Point to Q.15 block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_f1ltoq15. During code
generation, this block calls the DSP_f1toq15 routine to produce optimized code.

C64x Convert Q.15 to Floating Point

5-153

C64x Convert Q.15 to Floating-Point

Purpose Convert Q.15 fixed-point signal to single-precision floating-point
Library C64x DSP Library — Conversions
Descripl'ion The C64x Convert Q.15 to Floating-Point block converts a Q.15 input signal to

a single-precision floating-point output signal. Input can be real or complex.

TI CE4x
N For real inputs, the number of input samples must be even.
Q15TOFL The Convert Q.15 to Floating-Point block supports both continuous and
| C;‘G*’?_“ OF-_15_' | discrete sample times. This block also supports both little-endian and
Lu] aling-Foin

big-endian code generation.

.
Dialog Box
Block Parameters: Converk [).15 ko Floakin: x|

Convert .15 to Floating-Point [mask)

Convert a .15 gsignal to a single-precigion floating-point signal. Both real
and complex inputs are allowed. Howewer, for real inputs only, the tatal
number of input sanmples must be even.

Cancel | Help | Spply |

Algorithm In simulation, the Convert Q.15 to Floating-Point block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_q15tofl. During code
generation, this block calls the DSP_q15tof1 routine to produce optimized code.

See Also C64x Convert Floating-Point to Q.15

5-154

Cé64x FFT

Purpose
Library

Description
Tl CE4x

L I

FFT16% 15R
FFT

Decimation-in-frequency forward FFT of complex input vector
C64x DSP Library — Transforms

The C64x FFT block computes the decimation-in-frequency forward FFT, with
interstage scaling, of each channel of a complex input signal. The input length
of each channel must be both a power of two and in the range 8 to 16,384,
inclusive. The input must also be in natural (linear) order. The output of this
block is a complex signal in natural order. Inputs and outputs are all signed
16-bit fixed-point data types.

The fft16x16r routine used by this block employs butterfly stages to perform
the FFT. The number of butterfly stages used, S, depends on the input length
L =27k. Ifk is even, then S = k/2. If k is odd, then S = (k+1)/2.

Ifk is even, then L is a power of two as well as a power of four, and this block
performs all S stages with radix-4 butterflies to compute the output. Ifk is odd,
then L is a power of two but not a power of four. In that case this block performs
the first (S-1) stages with radix-4 butterflies, followed by a final stage using
radix-2 butterflies.

To minimize noise, the FFT block also implements a divide-by-two scaling on
the output of each stage except for the last. Therefore, in order to ensure that
the gain of the block matches that of the theoretical FFT, the FFT block offsets
the location of the binary point of the output data type by (S-1) bits to the right
relative to the location of the binary point of the input data type. That is, the
number of fractional bits of the output data type equals the number of
fractional bits of the input data type minus (S-1).

OutputFractionalBits = InputFractionalBits—(S-1)

The FFT block supports both continuous and discrete sample times. This block
supports little-endian code generation.

5-155

C64x FFT

Dialog Box

Algorithm

See Also

5-156

Block Parameters: FFT x|
FET [maszk]

Compute the decimation-in-frequency forward FET of a comples input
vector. The input wector must be in natural [linear] order. The input length
must be in the range 8 to 16384, inclusive, and must be a power of bwo,
The complex output vectar iz in natural [inear] order. Inputs and outputs
are signed 16-bit fised-point data types.

Cancel | Help | Lpply |

In simulation, the FFT block is equivalent to the TMS320C64x DSP Library
assembly code function DSP_fft16x16r. During code generation, this block
calls the DSP_fft16x16r routine to produce optimized code.

C64x Radix-2 FFT, C64x Radix-2 IFFT

C64x General Real FIR

Purpose
Library

Description
Tl CE4x

L

FIR_GEN
Gieneral Real FIR

Dialog Box

Filter real input signal using real FIR filter
C64x DSP Library — Filtering

The C64x General Real FIR block filters a real input signal X using a real FIR
filter. This filter is implemented using a direct form structure. Signal X must
contain at least four samples per channel and the number of samples must be
an integer multiple of four.

The filter coefficients are specified by a real vector H, which must contain at
least five elements. The coefficients must be in reversed order. All inputs,
coefficients, and outputs are Q.15 signals.

The General Real FIR block supports discrete sample times and both
little-endian and big-endian code generation.

Block Parameters: General Real FIR x|

— General Real FIR [mazk]

Filter a real input zignal % uzing a real FIR filker. The filter coefficients are
specified by a real vectar H, which must contain at least five elements.
The coefficients mugt be in reverzed order. Input signals, coefficients,
and output signalz are all 015 data types. The number of zignal zamples
per channel must be a multiple of 4.

— Parameters

Coefficient source: |

Coefficients [H]:
|[n.5, 0.4,030201]

Initial conditions:
jo

Ok I Cancel | Help | Apply |

Coefficient source
Specify the source of the filter coefficients:

®Specify via dialog — Enter the coefficients in the Coefficients (H)
parameter in the dialog box

® Input port — Accept the coefficients from port H. This port must have
the same rate as the input data port X

5-157

C64x General Real FIR

Coefficients (H)

Designate the filter coefficients in vector format. This parameter is only
visible when Specify via dialog is selected for the Coefficient source
parameter. This parameter is tunable in simulation.

Initial conditions
If the initial conditions are

¢ All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length of this vector
must be one less than the number of coefficients.

¢ Different across channels, enter a matrix containing all initial conditions.
The number of rows of this matrix must be one less than the number of
coefficients, and the number of columns of this matrix must be equal to
the number of channels.

The initial conditions must be real.

Algorithm In simulation, the General Real FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir_gen. During code
generation, this block calls the DSP_fir_gen routine to produce optimized code.

See Also C64x Complex FIR, C64x Radix-4 Real FIR, C64x Radix-8 Real FIR,
C64x Symmetric Real FIR

5-158

C64x LMS Adaptive FIR
|

Purpose LMS adaptive FIR filtering
Library C64x DSP Library — Filtering
Description The C64x LMS Adaptive FIR block performs least-mean-square (LMS)

adaptive filtering. This filter is implemented using a direct form structure.
¥ @ RE

The following constraints apply to the inputs and outputs of this block:
FIRLISZ

LIS Adaptive FIR ® The scalar input X must be a Q.15 data type.
¢ The scalar input B must be a Q.15 data type.
¢ The scalar output R is a Q1.30 data type.

e The output H has length equal to the number of filter taps and is a Q.15 data

type. The number of filter taps must be a positive integer that is a multiple
of four.

This block performs LMS adaptive filtering according to the equations

e(n+1) =d(n+1)—[H(n) -X(n+1)]

and

H(n+1) = H(n)+[pe(n+1) -X(n+1)]

where

® n designates the time step.

* X is a vector composed of the current and last nH — 1 scalar inputs.

® d is the desired signal. The output R converges to d as the filter converges.
* H is a vector composed of the current set of filter taps.

* ¢ is the error, or d — [H(n) - X(n +1)].

® | is the step size.

For this block, the input B and the output R are defined by
B

pe(n +1)

R =Hn) -X(n+1)

5-159

C64x LMS Adaptive FIR

which combined with the first two equations, result in the following equations
that this block follows:

e(n+1) =d(n+1)-R
H(n+1) = Hn)+[B-X(n+1)]

d and B must be produced externally to the LMS Adaptive FIR block. See
“Examples” below for a sample model where this is done.

The LMS Adaptive FIR block supports discrete sample times and both
little-endian and big-endian code generation.

Dialog Box

Block Parameters: LMS Adaptive FIR x|
—LM5S Adaptive FIR [mask]

Perform least-mean-square (LM5] adaptive FIR fitkering. The number of
FIR filter taps must be a pozitive multiple of 4. The zcalar inputs = and B
muzt be 0,15 data types. The scalar output B iz a 071,30 data type. The
output H haz length equal to the number of filker taps and iz a 0.15 data
type.

— Parameters
Mumber of FIR filker taps:
Initial walue of fiker taps:
o

[W Dutput filter taps H?

0K I Cancel | Help | Lpply |

Number of FIR filter taps
Designate the number of filter taps. The number of taps must be a positive
integer that is also a multiple of four.

Initial value of filter taps
Enter the initial value of the filter taps.

Output filter coefficients H?

If selected, the filter taps are produced as output H. If not selected, H is
suppressed.

5-160

C64x LMS Adaptive FIR
|

Algorithm In simulation, the LMS Adaptive FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_firlms2. During code
generation, this block calls the DSP_firlms2 routine to produce optimized code.

Examples The following model uses the LMS Adaptive FIR block.
e d

Random
Source

Digital Filter

r e B 1
L sfint_Ent [T sfin18_Ents
Subtract Gain |
sfix16_Enl5 T DRZx | sfixdd_End0
5 J@ 1 a1 En1s [ide] | fut WOiE] i
Gateway In AL e— [Vo ¥

LM Adaptive FIR & temay Dut Signal Ta
Wotkepace

| 1 |

sfixt6 &t | o [

The portion of the model enclosed by the dashed line produces the signal B and
feeds it back into the LMS Adaptive FIR block. The inputs to this region are X
and the desired signal d, and the output of this region is the vector of filter taps
H . Thus this region of the model acts as a canonical LMS adaptive filter. For
example, compare this region to the adaptfilt.1lms function in the Filter
Design Toolbox. adaptfilt.lms performs canonical LMS adaptive filtering and
has the same inputs and output as the outlined section of this model.

To use the LMS Adaptive FIR block you must create the input B in some way
similar to the one shown here. You must also provide the signals X and d. This
model simulates the desired signal d by feeding X into a digital filter block.
You can simulate your desired signal in a similar way, or you may bring d in
from the workspace with a From Workspace or codec block.

5-161

C64x Matrix Multiply

Purpose
Library

Description

A JI Codx
¥ B
B
MAT_MUL
Patrix bultip by

5-162

Matrix multiply two input signals
C64x DSP Library — Math and Matrices

The C64x Matrix Multiply block multiplies two input matrices A and B. Inputs
and outputs are real, 16-bit, signed fixed-point data types. This block wraps
overflows when they occur.

The product of the two 16-bit inputs results in a 32-bit accumulator value. The
Matrix Multiply block, however, only outputs 16 bits. You can choose to output
the highest or second-highest 16 bits of the accumulator value.

Alternatively, you can choose to output 16 bits according to how many
fractional bits you want in the output. The number of fractional bits in the
accumulator value is the sum of the fractional bits of the two inputs.

Input A Input B Accumulator
Value
Total Bits 16 16 32
Fractional Bits R S R+S

Therefore R+S is the location of the binary point in the accumulator value. You
can select 16 bits in relation to this fixed position of the accumulator binary
point to give the desired number of fractional bits in the output (see “Examples’
below). You can either require the output to have the same number of fractional
bits as one of the two inputs, or you can specify the number of output fractional
bits in the Number of fractional bits in output parameter.

4

The Matrix Multiply block supports both continuous and discrete sample
times. This block also supports both little-endian and big-endian code
generation.

C64x Matrix Multiply
|

Dialog Box

Block Parameters: Matriz Multiply |

— Matriz Multiply [mask)

Perform matrix multiplication =478, Inpute & and B must be real. All input
and output gsignals are zigned 16-bit fixed-point data bypes. Intermediate
accumulations have 32 bitz [631:b0] and wrap when overflow occurs..

— Parameters

Set fractional bits in output to: [TV RN

Mumber of fractional bits in outpuk:

|15

(] 4 I Cancel | Help | Lpply |

Set fractional bits in output to

Only 16 bits of the 32 accumulator bits are output from the block. Choose
which 16 bits to output from the list:

eMatch input A— Output the 16 bits of the accumulator value that cause
the number of fractional bits in the output to match the number of
fractional bits in input A (or R in the discussion above).

eMatch input B — Output the 16 bits of the accumulator value that cause
the number of fractional bits in the output to match the number of
fractional bits in input B (or S in the discussion above).

eMatch high bits of acc. (b31:b16) — Output the highest 16 bits of
the accumulator value.

eMatch high bits of prod. (b30:b15) — Output the second-highest 16
bits of the accumulator value.

eUser-defined — Output the 16 bits of the accumulator value that cause
the number of fractional bits of the output to match the value specified in
the Number of fractional bits in output parameter.

Number of fractional bits in output

Specify the number of bits to the right of the binary point in the output.

This parameter is enabled only when you select User-defined for Set
fractional bits in output to.

5-163

C64x Matrix Multiply

Algorithm

Examples

See Also

5-164

In simulation, the Matrix Multiply block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_mat_mul. During code
generation, this block calls the DSP_mat_mul routine to produce optimized code.

Example 1 Suppose A and B are both Q.15. The data type of the resulting
accumulator value is therefore the 32-bit data type Q1.30 (R + S = 30). In the
accumulator, bits 31:30 are the sign and integer bits, and bits 29:0 are the
fractional bits. The following table shows the resulting data type and
accumulator bits used for the output signal for different settings of the Set
fractional bits in output to parameter.

Set fractional bits in output to Data Type Accumulator Bits
Match input A Q.15 b30:b15
Match input B Q.15 b30:b15
Match high bits of acc. Q1.14 b31:b16
Match high bits of prod. Q.15 b30:b15

Example 2 Suppose A is Q12.3 and B is Q10.5. The data type of the resulting
accumulator value is therefore Q23.8 (R + S = 8). In the accumulator, bits 31:8
are the sign and integer bits, and bits 7:0 are the fractional bits. The following
table shows the resulting data type and accumulator bits used for the output
signal for different settings of the Set fractional bits in output to
parameter.

Set fractional bits in output to Data Type Accumulator Bits
Match input A Q12.3 b20:b5

Match input B Q10.5 b18:b3

Match high bits of acc. Q23.-8 b31:b16

Match high bits of prod. Q22.-7 b30:b15

C64x Vector Multiply

C64x Matrix Transpose

Purpose
Library

Description

! i
MAT_TRANS
Matrix Transposs

Dialog Box

Algorithm

Matrix transpose input signal
C64x DSP Library — Math and Matrices

The C64x Matrix Transpose block transposes an input matrix or vector. A 1-D
input is treated as a column vector and transposed to a row vector. Input and
output signals are any real, 16-bit, signed fixed-point data type. Both the
number of rows and the number of columns must be multiples of four.

The Matrix Transpose block supports both continuous and discrete sample
times. This block also supports both little-endian and big-endian code
generation.

Block Parameters: Matrix Transpose |

Matriz Tranzpoze [mask]

Compute the matri= transpoge. Yector input signals are treated as [M=1]
matricez. The output iz always a matrix. The input and output data types
may be any real signed 16-bit fised-paint data type. The number of rows
and the nurmber of columng must each be a multiple of four.

Cancel | Help | Apply |

In simulation, the Matrix Transpose block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_mat_trans. During
code generation, this block calls the DSP_mat_trans routine to produce
optimized code.

5-165

C64x Radix-2 FFT

Purpose
Library

Description

Tl CEdx

%

RADIXKZ

Radix2 FFT

Dialog Box

Algorithm

Examples

5-166

Radix-2 decimation-in-frequency forward FFT of complex input vector
C64x DSP Library — Transforms

The C64x Radix-2 FFT block computes the radix-2 decimation-in-frequency
forward FFT of each channel of a complex input signal. The input length of
each channel must be both a power of two and in the range 16 to 32,768,
inclusive. The input must also be in natural (linear) order. The output of this
block is a complex signal in bit-reversed order. Inputs and outputs are signed
16-bit fixed-point data types, and the output data type matches the input data

type.

You can use the C64x Bit Reverse block to reorder the output of the Radix-2
FFT block to natural order.

The Radix-2 FFT block supports both continuous and discrete sample times.
This block supports little-endian code generation.

Block Parameters: Radix-2 FFT x|
Fadis-2 FFT [mazk]

Compute the radis-2 decimation-in-frequency forward FFT of a comples
input wectar, The input vector must be in natural (inear] order. The input
length must be in the range 16 to 32768, inclusive, and must be a power
of bwo. The output vector iz complex and in bit-reversed order. Inputs and
outputs are signed 16-bit fixed-point data types.

Cancel | Help | Spply |

In simulation, the Radix-2 FF'T block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_radix2. During code
generation, this block calls the DSP_radix2 routine to produce optimized code.

The output of the Radix-2 FF'T block is bit-reversed. This example shows you
how to use the C64x Bit Reverse block to reorder the output of the Radix-2 FFT
block to natural order.

w2 stin 16 _Enif (o) [16x1 RADIXZ stin 16 _Enif (o) [16x1 BITREV_CPLX stin 16 _Enif (o) [16x1

Constant Radix2 FFT Bit Reverse Signal Ta
Matepaca?

C64x Radix-2 FFT

See Also

The following code calculates the same FFT as the above model in the
workspace. The output from this calculation, y2, is then displayed side-by-side
with the output from the model, c. The outputs match, showing that the Bit
Reverse block does reorder the Radix-2 FFT block output to natural order:

= zeros(n,
(2) = 0.5;
= zeros(n,

)5

)5

X2 = complex(xr, xi);
y2 = fft(x2);

,» €]
0.5000
0.4619
0.3536
0.1913

0
-0.1913
-0.3536
-0.4619
-0.5000
-0.4619
-0.3536
-0.1913

0
0.1913
0.3536

+ + 4+ 4+ + +
Oooooo

(el elNelNeolNeNeNol

.19131
.35361
.46191
.50001
.46191
.35361
.19131

.19131
.35361
.46191
.50001
.46191
.35361

0.4619 + 0.19131i

C64x Bit Reverse, C64x FFT, C64x Radix-2 IFFT

o O oo

-0.
-0.
-0.
-0.
-0.
-0.
-0.

0.
0.

.5000
.4619
.3535
.1913

0
1913
3535
4619
5000
4619
3535
1913

0
1913
3535

+ + + + + o+
Oooooo

O O OO OoOOoOo

.19131
.35351
.46191
.50001
.46191
.35351
.19131

.19131
.35351
.46191
.50001
.46191
.35351

0.4619 + 0.19131i

5-167

C64x Radix-2 IFFT

Purpose

Library

Description

Tl CEdx

%

RADIXKZ

Radix2 IFFT

Dialog Box

5-168

Radix-2 inverse FFT of complex input vector
C64x DSP Library — Transforms

The C64x Radix-2 IFFT block computes the radix-2 inverse FFT of each
channel of a complex input signal. This block uses a decimation-in-frequency
forward FFT algorithm with butterfly weights modified to compute an inverse
FFT. The input length of each channel must be both a power of two and in the
range 16 to 32,768, inclusive. The input must also be in natural (linear) order.
The output of this block is a complex signal in bit-reversed order. Inputs and
outputs are signed 16-bit fixed-point data types.

The radix2 routine used by this block employs a radix-2 FFT of length L=2"k.
In order to ensure that the gain of the block matches that of the theoretical
IFFT, the Radix-2 IFFT block offsets the location of the binary point of the
output data type by k bits to the left relative to the location of the binary point
of the input data type. That is, the number of fractional bits of the output data
type equals the number of fractional bits of the input data type plus k.

OutputFractionalBits = InputFractionalBits + (k)

You can use the C64x Bit Reverse block to reorder the output of the Radix-2
IFFT block to natural order.

The Radix-2 IFFT block supports both continuous and discrete sample times.
This block supports little-endian code generation.

Block Parameters: Radix-2 IFFT x|
Fadis-2 IFFT [mazk]

Compute the radis-2 itverse FFT of a complex input vectar. The block.
uzes a radix-2 decimation-in-frequency forward FFT algarithm with buttertly
weights modified to compute an inverse FET. The input wectar must be in
natural [linear] order. The input length must be in the range 16 to 32768,
inclusive, and must be a power of twao, The complex output vectar iz in
bit-reversed order. Inputs and outputs are signed 16-bit fiked-point data
types.

R Cancel Help Apply

C64x Radix-2 IFFT
|

Algorithm In simulation, the Radix-2 IFFT block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_radix2. During code
generation, this block calls the DSP_radix2 routine to produce optimized code.

See Also C64x Bit Reverse, C64x FFT, C64x Radix-2 FFT

5-169

C64x Radix-4 Real FIR

Purpose
Library

Description

Tl CEdx

4

FIR_R4

Radix4 Real FIR

Dialog Box

5-170

Filter real input signal using real FIR filter
C64x DSP Library — Filtering

The C64x Radix-4 Real FIR block filters a real input signal X using a real FIR
filter. This filter is implemented using a direct form structure.

The number of input samples per channel must be a multiple of four. The filter
coefficients are specified by a real vector, H. The number of filter coefficients
must be a multiple of four and must be at least eight. The coefficients must also
be in reversed order {b(n), b(n-1),...,(b(0)}. All inputs, coefficients, and outputs
are Q.15 signals.

The Radix-4 Real FIR block supports discrete sample times and both
little-endian and big-endian code generation.

Block Parameters: Radix-4 Real FIR x|
—Radix-4 Real FIR [mask)]

Filter a real input zignal 3 uzing a real FIR filker. The number of input
zamples per channel must be a multiple of 4. The filker coefficients are
specified by a real vector H. The number of coefficients must be a
multiple of four and must be at least eight. The coefficients must be in
reverzed order. Input zignals, coefficients, and output zignals are all .15
data types.

— Parameters

Coefficient source: [l iReERE

Coefficients [H]:
I[U.E, 07 06.0504,030201]

Initial conditions:

|0

(] 4 I Cancel | Help | Lpply |

Coefficient source
Specify the source of the filter coefficients:

e Specify via dialog — Enter the coefficients in the Coefficients
parameter in the dialog box

® Input port — Accept the coefficients from port H. This port must have
the same rate as the input data port X

C64x Radix-4 Real FIR

Coefficients (H)

Designate the filter coefficients in vector format. This parameter is only
visible when Specify via dialog is selected for the Coefficient source
parameter. Enter the n coefficients in reversed order — b(n),
b(n-1),...,(b(0). This parameter is tunable in simulation.

Initial conditions
If the initial conditions are

® All the same, enter a scalar.

¢ Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length of this vector
must be one less than the number of coefficients.

¢ Different across channels, enter a matrix containing all initial conditions.
The number of rows of this matrix must be one less than the number of
coefficients, and the number of columns of this matrix must be equal to
the number of channels.

Initial conditions must be real.

Algorithm In simulation, the Radix-4 Real FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir r4. During code
generation, this block calls the DSP_fir_r4 routine to produce optimized code.

See Also C64x Complex FIR, C64x General Real FIR, C64x Radix-8 Real FIR,
C64x Symmetric Real FIR

5-171

C64x Radix-8 Real FIR

Purpose

Library

Description

Tl CEdx

4

FIR_Ra

Radix-8 Real FIR

Dialog Box

5-172

Filter real input signal using real FIR filter

C64x DSP Library — Filtering

The C64x Radix-8 Real FIR block filters a real input signal X using a real FIR
filter. This filter is implemented using a direct form structure.

The number of input samples per channel must be a multiple of four. The filter

coefficients are specified by a real vector, H.

The number of coefficients must

be an integer multiple of eight. The coefficients must be in reversed order —

{b(n), b(n-1),...,(b(0)}. All inputs, coefficients,

and outputs are Q.15 signals.

The Radix-8 Real FIR block supports discrete sample times and little-endian

code generation only.

Block Parameters: Radix-8 Real FIR

—Radix-8 Real FIR [mazk]

Filter a real input zignal % uzing a real FIR filker. The number of input
samples per channel rmust be a multiple of 4. The filker coefficients are
specified by a real vector H. The number of coefficients must be a
multiple of eight. The coefficients must be in reversed order. Input
zighals, coefficients, and output zignals are all .15 data types.

— Parameters

Coeflicient source: (Bt dizlog

Coefficients [H]:
|[D.8, 07 0605040302 01]

Initial conditions:
o

Ok I Cancel | Help | Apply |

Coefficient source

Specify the source of the filter coefficients:

e Specify via dialog — Enter the coefficients in the Coefficients

parameter in the dialog box

® Input port — Accept the coefficients from port H. This port must have

the same rate as the input data port X

C64x Radix-8 Real FIR
|

Coefficients (H)
Designate the filter coefficients in vector format, entering them in reversed
order — b(n), b(n-1),...,(b(0). This parameter is visible when Specify via
dialog is selected for the Coefficient source parameter. This parameter
is tunable in simulation.

Initial conditions
If the initial conditions are

¢ All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length of this vector
must be one less than the number of coefficients.

¢ Different across channels, enter a matrix containing all initial conditions.
The number of rows of this matrix must be one less than the number of
coefficients, and the number of columns of this matrix must be equal to
the number of channels.

Initial conditions must be real.

Algorithm In simulation, the Radix-8 Real FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir r8. During code
generation, this block calls the DSP_fir_r8 routine to produce optimized code.

See Also C64x Complex FIR, C64x General Real FIR, C64x Radix-4 Real FIR,
C64x Symmetric Real FIR

5-173

C64x Real Forward Lattice All-Pole IIR

Purpose
Library

Description

e

IIRLAT

Real Foreand Lattice
All-Poke IR

Dialog Box

5-174

Filter real input signal using lattice IIR filter
C64x DSP Library — Filtering

The C64x Real Forward Lattice All-Pole IIR block filters a real input signal
using an autoregressive forward lattice filter. The input and output signals
must be the same 16-bit signed fixed-point data type. The reflection coefficients
must be real and Q.15. The number of reflection coefficients must be greater
than or equal to ten; they must be even; and they must be in reversed order —
k(n), k(n-1),..., k(0). Using an even number of reflection coefficients maximizes
the speed of your generated code.

The Real Forward Lattice All-Pole IIR block supports discrete sample times
and both little-endian and big-endian code generation.

Block Parameters: Real Forward Lattice All x|

— Real Fonaard Lattice All-Pole 1R [mask)

Filter a real input zignal using an auto-regressive (&R] fonwmard lattice filker.
The input (] and output [R] signals must be the same 16-bit zigned
fixed-point data type. The reflection coefficients (K] must be real and 0,15,
The number of reflection coefficients must be even and greater than or
equal to ten, and the coefficients muzt be in reversed order.

— Parameters

Coeflicient source: (Bt dizlog

Reflection coefficients:
|0.057[10,8,8,7.6.5,4.3.2.1]

Initial conditions:
o

Ok I Cancel | Help | Apply |

Coefficient source
Specify the source of the filter coefficients:

®Specify via dialog — Enter the coefficients in the Reflection
coefficients parameter in the dialog box

® Input port — Accept the coefficients from port K

C64x Real Forward Lattice All-Pole

Reflection coefficients

Designate the reflection coefficients of the filter in vector format. The
number of coefficients must be greater than or equal to ten and be even.
Enter the coefficients in reverse order from k(n) to k(0). Using an even
number of reflection coefficients maximizes the speed of your generated
code. This parameter is visible when you select Specify via dialog for the
Coefficient source parameter. This parameter is tunable in simulation.

Initial conditions
If your block initial conditions are

¢ All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length (number of
elements) of this vector must be the same as the number of reflection
coefficients in your filter.

¢ Different across channels, enter a matrix containing all initial conditions.
The number of rows (initial conditions for one channel) of this matrix
must be the same as the number of reflection coefficients, and the number
of columns of this matrix must be equal to the number of channels.

Algorithm In simulation, the Real Forward Lattice All-Pole IIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_iirlat. During code

generation, this block calls the DSP_iirlat routine to produce optimized code.

See Also C64x Real IIR

5-175

C64x Real IIR

Purpose
Library

Description
T| CG4xn

%

HRLAT

Real Forear Lattics

Dialog Box

5-176

Filter real input signal using IIR filter
C64x DSP Library — Filtering

The C64x Real IIR block filters a real input signal X using a real autoregressive
moving-average (ARMA) IIR Filter. This filter is implemented using a direct
form I structure. You must use at least eight input samples.

There must be five AR coefficients and five MA coefficients. The first AR
coefficient is always assumed to be one. Inputs, coefficients, and output are
Q.15 data types.

The Real IIR block supports discrete sample times and both little-endian and
big-endian code generation.

Block Parameters: Real IIR x|

—Real IR [mazk]

Filter a real input zignal % uzing a real auto-regressive moving-average
[ARMA] IR flter, There must be five AR coefficients and five MA
coefficients; howewer, the first AR coefficient iz azzumed o be equal to
one. The number of input samples must be at least eight. [nputs,
coefficients, and output are all Q.15 data types.

— Parameters

Coefficient sources: |3

b [numerator] coefficients:
|[n.1 0.2030.405

AR [denominator] coefficients:
|[1 01020304

Input state initial conditions:
jo

Output state initial conditions:
jo

Ok I Cancel Help Apply

C64x Real IIR

Coefficient sources
Specify the source of the filter coefficients:

e Specify via dialog — Enter the coefficients in the MA (numerator)
coefficients and AR (denominator) coefficients parameters in the
dialog box

® Input ports — Accept the coefficients from ports MA and AR

MA (numerator) coefficients

Designate the moving-average coefficients of the filter in vector format.
There must be five MA coefficients. This parameter is only visible when
Specify via dialog is selected for the Coefficient sources parameter.
This parameter is tunable in simulation.

AR (denominator) coefficients

Designate the autoregressive coefficients of the filter in vector format.
There must be five AR coefficients, however the first AR coefficient is
assumed to be equal to one. This parameter is only visible when Specify
via dialog is selected for the Coefficient sources parameter. This
parameter is tunable in simulation.

Input state initial conditions
If the input state initial conditions are

¢ All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter a vector
containing the input state initial conditions for one channel. The length
of this vector must be four.

¢ Different across channels, enter a matrix containing all input state initial
conditions. This matrix must have four rows.

Output state initial conditions
If the output state initial conditions are

¢ All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter a vector
containing the output state initial conditions for one channel. The length
of this vector must be four.

5-177

C64x Real IIR

Algorithm

See Also

5-178

¢ Different across channels, enter a matrix containing all output state
initial conditions. This matrix must have four rows.

In simulation, the Real IIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_iir. During code

generation, this block calls the DSP_iir routine to produce optimized code.

C64x Real Forward Lattice All-Pole IIR

C64x Reciprocal

Purpose
Library
Description
@ F
RECIF1G EF
Recipocal

Dialog Box

Algorithm

Fraction and exponent of reciprocal of real input signal
C64x DSP Library — Math and Matrices

The C64x Reciprocal block computes the fractional (F) and exponential (E)
portions of the reciprocal of a real Q.15 input, such that the reciprocal of the
input is F*(2F). The fraction is Q.15 and the exponent is a 16-bit signed integer.

The Reciprocal block supports both continuous and discrete sample times. This
block also supports both little-endian and big-endian code generation.

Block Parameters: Reciprocal =|

Feciprocal [mask]

Compute the fractional [F] and exponential [E] portions of the reciprocal of
a real 315 input, such that the reciprocal of the input is F2°E]. The
fraction iz (.15 and the exponent iz a signed 16-bit integer.

Cancel | Help | Spply |

In simulation, the Reciprocal block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_recip16. During code
generation, this block calls the DSP_recip16 routine to produce optimized code.

5-179

C64x Symmetric Real FIR

Purpose
Library

Description

Tl CEdx

L. I

FIR_ S
Symmetrc Real FIR

Filter real input signal using FIR filter
C64x DSP Library — Filtering

The C64x Symmetric Real FIR block filters a real input signal using a
symmetric real FIR filter. This filter is implemented using a direct form
structure.

The number of input samples per channel must be even. The filter coefficients
are specified by a real vector H, which must be symmetric about its middle
element. Thus you must use an odd number of coefficients. The number of
coefficients must be of the form 16k + 1, where k is a positive integer. This
block wraps overflows that occur. The input, coefficients, and output are 16-bit
signed fixed-point data types.

Intermediate multiplys and accumulates performed by this filter result in
32-bit accumulator values. However, the Symmetric Real FIR block only
outputs 16 bits. You can choose to output 16 bits of the accumulator value in
one of the following ways.

Match input x

Output 16 bits of the accumulator value such that the output
has the same number of fractional bits as the input

Match coefficients h Output 16 bits of the accumulator value such that the output

has the same number of fractional bits as the coefficients

Match high 16 bits of acc. Output bits 31 - 16 of the accumulator value

Match high 16 bits of prod. Output bits 30 - 15 of the accumulator value

User-defined

Output 16 bits of the accumulator value such that the output
has the number of fractional bits specified in the Number of
fractional bits in output parameter

5-180

The Symmetric Real FIR block supports discrete sample times and only
little-endian code generation.

C64x Symmetric Real FIR

Dialog Box

|

Block Parameters: Symmetric Real FIR i x|

— Symmetric Real FIR [mask)

Filter a real input zignal > uzing a symmetnc real FIR filter. The number of
input zamplez per channel must be a multiple of four. The filter coefficients
are specified by a real vectar H, which must be sprametric about its middle
element. The number of elements in H must be of the form 16k+1 where k
iz a positive integer. Intermediate accumulations have 32 bits [b31:b0)
and uze wrap-around arithmetic. All input and output signals are signed
1E-bit fixed-point data typez.

— Parameters

Coefficient source:

Coefficients:
ID.DE “[1.2,3.4,5,6. 7,859, 8765843 21]

Set fractional bits in coefficients ta: | Best precision j

Murmber af fractional bits in coefficients:
10

Set fractional bits in output te: |Match high 16 bits of product [630:b > |

Murnber af fractional bits in outpu:
Jio

Initial conditions:
|0

Ok, I Cancel | Help | Spply |

Coefficient source
Specify the source of the filter coefficients:

e Specify via dialog — Enter the coefficients in the Coefficients
parameter in the dialog box

® Input port — Accept the coefficients from port H

5-181

C64x Symmetric Real FIR

Coefficients
Enter the coefficients in vector format. Coefficients must be symmetric
about the middle element of the vector, so the number of coefficients must
be odd. This parameter is visible when Specify via dialog is specified for
the Coefficient source parameter. This parameter is tunable in
simulation.

Set fractional bits in coefficients to
Specify the number of fractional bits in the filter coefficients:

eMatch input X — Sets the coefficients to have the same number of
fractional bits as the input

*Best precision — Sets the number of fractional bits of the coefficients
such that the coefficients are represented to the best precision possible

e User-defined — Sets the number of fractional bits in the coefficients
with the Number of fractional bits in coefficients parameter

This parameter is visible only when Specify via dialog is specified for
the Coefficient source parameter.

Number of fractional bits in coefficients
Specify the number of bits to the right of the binary point in the filter
coefficients. This parameter is visible only when Specify via dialog is
specified for the Coefficient source parameter, and is only enabled if
User-defined is specified for the Set fractional bits in coefficients to
parameter.

Set fractional bits in output to

Only 16 bits of the 32 accumulator bits are output from the block. Select
which 16 bits to output:

eMatch input X — Output the 16 bits of the accumulator value that cause
the number of fractional bits in the output to match the number of
fractional bits in input X

eMatch coefficients H— Output the 16 bits of the accumulator value
that cause the number of fractional bits in the output to match the
number of fractional bits in coefficients H

eMatch high bits of acc. (b31:b16) — Output the highest 16 bits of
the accumulator value

5-182

C64x Symmetric Real FIR
|

eMatch high bits of prod. (b30:b15) — Output the second-highest 16
bits of the accumulator value
eUser-defined — Output the 16 bits of the accumulator value that cause

the number of fractional bits of the output to match the value specified in
the Number of fractional bits in output parameter

See Matrix Multiply “Examples” on page 5-164 for demonstrations of these
selections.

Number of fractional bits in output

Specify the number of bits to the right of the binary point in the output.
This parameter is only enabled if User-defined is selected for the Set
fractional bits in output to parameter.

Initial conditions
If the initial conditions are

¢ All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length of this vector
must be one less than the number of coefficients.

¢ Different across channels, enter a matrix containing all initial conditions.
The number of rows of this matrix must be one less than the number of
coefficients, and the number of columns of this matrix must be equal to
the number of channels.

Algorithm In simulation, the Symmetric Real FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir_sym. During code
generation, this block calls the DSP_fir_ symroutine to produce optimized code.

See Also C64x Complex FIR, C64x General Real FIR, C64x Radix-4 Real FIR,
C64x Radix-8 Real FIR

5-183

C64x Vector Dot Product

Purpose
Library
Description
¥ ()

[
Y COTRROD
Wector Dot Product

Dialog Box

Algorithm

5-184

Vector dot product of real input signals
C64x DSP Library — Math and Matrices

The C64x Vector Dot Product block computes the vector dot product of two real
input vectors, X and Y. The input vectors must have the same dimensions and
must be signed 16-bit fixed-point data types. The number of samples per
channel of the inputs must be a multiple of four. The output is a signed 32-bit
fixed-point scalar on each channel, and the number of fractional bits of the
output is equal to the sum of the number of fractional bits of the inputs.

The Vector Dot Product block supports both continuous and discrete sample
times. This block also supports both little-endian and big-endian code
generation.

Block Parameters: ¥ector Dot Produck x|

Wector Dot Product [mask]

Compute the vector dot product of real inputs = and . Inputs must hawe
the same dimenziohs, ahd the number of samples per channel must be a
multiple of four, Inputs must also be signed 16-bit fised-paint data tppes,
The output iz & signed 32-bit fised-point scalar on each channel.

Cancel | Help | Lpply |

In simulation, the Vector Dot Product block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_dotprod. During code
generation, this block calls the DSP_dotprod routine to produce optimized code.

C64x Vector Maximum Index

Purpose
Library

Description

Tl CEdx

! i
MAK 1D
Wachor Maximum Index

Dialog Box

Algorithm

Zero-based index of maximum value element in each input signal channel
C64x DSP Library — Math and Matrices

The C64x Vector Maximum Index block computes the zero-based index of the
maximum value element in each channel (vector) of the input signal. The input
may be any real, 16-bit, signed fixed-point data type. The number of samples

per input channel must be an integer multiple of 16 and at least 48. The output
data type is 32-bit signed integer.

The Vector Maximum Index block supports both continuous and discrete
sample times. This block also supports both little-endian and big-endian code
generation.

Block Parameters: Yector Maxrimum Indé x|

Yector Masimum Index [mask)

Compute the zero-based index of the maximum walue element in each
input channel [vector]. The number of input gamples per channel must be
a multiple of 16 and at lzast 48, The input may be any real signed 16-bit
fixed-point data type. The output data type iz a signed 32-bit integer.

Cancel | Help | Lpply |

In simulation, the Vector Maximum Index block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_maxidx. During code
generation, this block calls the DSP_maxidx routine to produce optimized code.

5-185

C64x Vector Maximum Value

Purpose
Library

Description

Tl Codx

! i
MAKVAL
Wachor Maximum Value

Dialog Box

Algorithm

See Also

5-186

Maximum value for each input signal channel
C64x DSP Library — Math and Matrices

The C64x Vector Maximum Value block returns the maximum value in each

channel (vector) of the input signal. The input can be any real, 16-bit, signed

fixed-point data type. The number of samples on each input channel must be

an integer multiple of 8 and must be at least 32. The output data type matches
the input data type.

The Vector Maximum Value block supports both continuous and discrete
sample times. This block also supports both little-endian and big-endian code
generation.

Block Parameters: Yector Magimum ¥al 'f x|

Yector Masimum Y alue [mazk)

Compute the masimum walue for each channel [vector] of the input zsignal.
The number of zamplez per channel must be at least 32, and an integer
multiple of eight. The input and output data type must match, and may be
any real signed 16-bit fixed-point data type.

Cancel | Help | Lpply |

In simulation, the Vector Maximum Value block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_maxval. During code
generation, this block calls the DSP_maxval routine to produce optimized code.

C64x Vector Minimum Value

C64x Vector Minimum Value

Purpose
Library

Description

Tl Codx

E i
MINVAL
Vechor Minimum Value

Dialog Box

Algorithm

See Also

Minimum value for each input signal channel
C64x DSP Library — Math and Matrices

The C64x Vector Minimum Value block returns the minimum value in each
channel of the input signal. The input may be any real, 16-bit, signed
fixed-point data type. The number of samples on each input channel must be
an integer multiple of 4 and must be at least 20. The output data type matches
the input data type.

The Vector Minimum Value block supports both continuous and discrete
sample times. This block also supports both little-endian and big-endian code
generation.

Block Parameters: ¥Yector Minimum Yalue x|

Yector Minimum Yalue [mask)

Compute the minimum value for each channel [vector] of the input signal.
The number of zamplez per channel must be greater than or equal to
twenty, and an integer multiple of four, The input and output data type
must match, and may be arw real signed 16-bit fixed-point data type.

Cancel | Help | Lpply |

In simulation, the Vector Minimum Value block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_minval. During code
generation, this block calls the DSP_minval routine to produce optimized code.

C64x Vector Maximum Value

5-187

C64x Vector Multiply

Purpose
Library

Description

¥ JI Codx
v |

i mUL32
Vachor Multip by

Dialog Box

Algorithm

See Also

5-188

Element-wise multiplication on inputs
C64x DSP Library — Math and Matrices

The C64x Vector Multiply block performs element-wise 32-bit multiplication of
two inputs X and Y. The total number of elements in each input must be a
multiple or 8 and at least 16, and the inputs must have matching dimensions.
The upper 32 bits of the 64-bit accumulator result are returned. All input and
output elements are 32-bit signed fixed-point data types.

The Vector Multiply block supports both continuous and discrete sample times.
This block also supports both little-endian and big-endian code generation.

Block Parameters: ¥ector Multiply |

Wector Multiply [mazk]

Perform element-wise 32-bit multiplication on real inputs % and Y. The
upper 32 bits of the B4-bit rezult are returned. The inputs must hawe
matching dimenzions. The total number of elements it each input must be
divisble by 8 and at least 16, All input and output elements are zigned
32-bit fised-point data types.

Cancel | Help | Lpply |

In simulation, the Vector Multiply block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_mul32. During code
generation, this block calls the DSP_mul32 routine to produce optimized code.

C64x Matrix Multiply

C64x Vector Negate

Purpose
Library

Description

4

NEG32

Vachor Negate

Dialog Box

Algorithm

Negate each input signal element
C64x DSP Library — Math and Matrices

The C64x Vector Negate block negates each element of a 32-bit signed
fixed-point input signal. For real signals, the number of input elements must
be a multiple of four, and at least eight. For complex signals, the number of
input elements must be at least two. The output is the same data type as the
input.

The Vector Negate block supports both continuous and discrete sample times.
This block also supports both little-endian and big-endian code generation.

Block Parameters: ¥Yector Negakte x|

Yector Negate [mask]

Megate each element of a signed 32-bit fized-point input signal. For real
zighalz, the number of input elements must a multiple of four and at least
eight. For complex signals, the number of input elements must be even
and at least four,

Cancel | Help | Apply |

In simulation, the Vector Negate block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_neg32. During code
generation, this block calls the DSP_neg32 routine to produce optimized code.

5-189

C64x Vector Sum of Squares

Purpose
Library

Description
‘ JI Codx
i
VECSUMSQ
Vector Sumol Squames

Dialog Box

Algorithm

5-190

Sum of squares over each real input channel
C64x DSP Library — Math and Matrices

The C64x Vector Sum of Squares block computes the sum of squares over each
channel of a real input. The number of samples per input channel must be
divisible by 4; equal to or greater than 8; and the input must be a 16-bit signed
fixed-point data type. The output is a 32-bit signed fixed-point scalar on each
channel. The number of fractional bits of the output is twice the number of
fractional bits of the input.

The Vector Sum of Squares block supports both continuous and discrete sample
times. This block also supports both little-endian and big-endian code
generation.

Block Parameters: ¥Yector Sum of Squares x|

Wector Sum of Squares [mazk]

Compute the sum of squares over each channel of a real input. The
number of zamples per channel muzt be a multiple of 4 and at least 12,
The input must be a zigned 16-bit fixed-point data type. The output iz a
signed 32-bit fised-point scalar on each channel.

Cancel | Help | Lpply |

In simulation, the Vector Sum of Squares block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_vecsumsg. During code
generation, this block calls the DSP_vecsumsq routine to produce optimized
code.

C64x Weighted Vector Sum

Purpose
Library

Description

% JI Codx

v |
Y W_WVEC
Wiaighted Vector Sum

Dialog Box

Weighted sum of input vectors

C64x DSP Library — Math and Matrices

|

The C64x Weighted Vector Sum block computes the weighted sum of two

inputs, X and Y, according to (W*X)+Y. Inpu

ts may be vectors or frame-based

matrices. The number of samples per channel must be a multiple of eight.
Inputs, weights, and output are Q.15 data types, and weights must be in the

range -1 < W< 1.

The Weighted Vector Sum block supports bot
times. This block also supports both little-en
generation.

Block Parameters: Weighted Yector Sum

h continuous and discrete sample
dian and big-endian code

—Weighted Yectar Sum [maszk]

Find the weighted zum "W + " of bwo input vectors. The number of
zamplez per channel must be a multiple of eight. The weights, ', may be
supplied either through an input part ar by entering directly into the mask
dialog. Input signals, weights, and output zsignals are all 0,15 data types.

r— Parameters
Wwieight source: [WEIETEONY
Ww'eights [w]:

jos

Ok, I Cancel | Help | Apply

Weight source
Specify the source of the weights:

e Specify via dialog — Enter the weights in the Weights (W) parameter

in the dialog box

® Input port — Accept the weights from port W

5-191

C64x Weighted Vector Sum

Weights (W)
This parameter is visible only when Specify via dialog is specified for
the Weight source parameter. This parameter is tunable in simulation.
When the weights are

¢ All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter a vector
containing the initial conditions for one channel. The length of this
vector must be a multiple of four.

¢ Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be a multiple of four,
and the number of columns of this matrix must be equal to the number
of channels.

Weights must be in the range -1 < W < 1.
Algorithm In simulation, the Weighted Vector Sum block is equivalent to the

TMS320C64x DSP Library assembly code function DSP_w_vec. During code
generation, this block calls the DSP_w_vec routine to produce optimized code.

5-192

C6711DSK

Purpose
Library

Description

C8711D5K

Configure model for C6711 DSP Starter Kit
Target Preferences in Embedded Target for TI C6000 DSP for TI DSP

Options on the block mask let you set features of code generation for your
C6711 DSP Starter Kit target. Adding this block to your Simulink model
provides access to the processor hardware settings you need to configure when
you generate code from Real-Time Workshop to run on the target.

Any model that you target to the C6711 DSK must include this block, or the
Custom C6000 target preferences block. Real-Time Workshop returns an error
message if a target preferences block is not present in your model.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to set the
target preferences for the model.

The processor and target options you specify on this block are:

¢ Target board information
® Memory mapping and layout

¢ Allocation of the various code sections, such as compiler, DSP/BIOS, and
custom sections

Setting the options included in this dialogbox results in identifying your target
to Real-Time Workshop, Embedded Target for TI C6000 DSP, and Simulink,
and configuring the memory map for your target. Both steps are essential for
targeting any board that is custom or explicitly supported, such as the C6711
DSK or the DM642 EVM.

Unlike most other blocks, you cannot open the block dialog box for this block
until you add the block to a model. When you try to open the block dialog, the
block attempts to connect to your target. It cannot make the connection when
the block is in the library and returns an error message.

5-193

C6711DSK

Generating Code from Model Subsystems

Real-Time Workshop provides the ability to generate code from a selected
subsystem in a model. To generate code for the C6711 DSK from a subsystem,
the subsystem model must include a C6711DSK target preferences block.

Dialog Box

) C6000 Target Preferences\C671 _ ol x|

| Memory | Bt |DSF'IEIIOS |7

Board Properties

Board type: ICE?HDSK

Davice: |5711 j

CPU clock speed: m WHz

I™ Simulatar I~ Enahle High-Speed RTDX

Board Custom Code

[Source fies Pyl .
Include paths _I

Libraries
Initialize functions
Terminate functions

| [

Link to Code Composer Studio
CCS board name:

IDMEMS Cycle Accurate Simulatar j
CCS processor name:

[TMs320CE400 =l

OK | Apply Cancel | Help |

All target preferences block dialog boxes provide tabbed access to panes the
following panes with options you set for the target processor and target board:

5-194

C6711DSK

¢ Board info — Select the target board and processor, set the clock speed, and
identify the target.

® Memory — Set the memory allocation and layout on the target processor
(memory mapping).

® Sections — Determine the arrangement and location of the sections on the
target processor such as where to put the DSP/BIOS and compiler
information.

* DSP/BIOS — Specify how to configure tasking features of DSP/BIOS.

Board Info Pane

The following options appear on the Board Info pane for the C6000 Target
Preferences dialog box.

Board Type

Lets you enter the type of board you are targeting with the model. The
C6711DSK block comes with C6711DSK defined as the default board type.

Device

Lets you select the type of processor on the board you select in CCS board
name. The processor type you enter determines the contents and setting for
options on the Memory and Sections panes in this dialog box. If you are
targeting one of the supported boards, Device is disabled and the selected
device is fixed.

CPU Clock Speed (MHz)

Shows the clock speed of the processor on your target. When you enter a value,
you are not changing the CPU clock rate. Instead, you are reporting the actual
rate. If the value you enter does not match the rate on the target, your model’s
real-time results may be wrong, and code profiling results are not correct.

Enter the actual clock rate the board uses. The rate you enter in this field does
not change the rate on the board. Setting CPU clock speed to the actual board
rate allows the code you generate to run correctly according to the actual clock
rate of the hardware.

When you generate code for C6000 targets from Simulink models, you may
encounter the software timer. The timer is invoked automatically to handle
and create interrupts to drive your model if either of the following conditions
occur:

5-195

C6711DSK

5-196

¢ If your model does not include ADC or DAC blocks
® When the processing rates in your model change (the model is multirate)

Correctly generating interrupts for your model depends on the clock rate of the
CPU on your target. You can change the rate with the DIP switches on the
board or from one of the software utilities provided by Texas Instruments.

For the timer software to calculate the interrupts correctly, Embedded Target
for TI C6000 DSP needs to know the actual clock rate of your target processor
as you configured it. CPU clock speed lets you tell the timer the rate at which
your target CPU runs, which is the rate to use to match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock speed to calculate
the time for each interrupt. For example, if your model includes a sine wave
generator block running at 1 KHz feeding a signal into an FIR filter block, the
timer needs to create interrupts to generate the sine wave samples at the
proper rate. Using the clock rate you choose, 100 MHz for example, the timer
calculates the sine generator interrupt period as follows for the sine block:

¢ Sine block rate = 1 KHz, or 0.001 s/sample
® CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires
100,000,000/1000 = 1 Sine block interrupt per 1,000,000 clock ticks

So you must report the correct clock rate or the interrupts come at the wrong
times and the results are incorrect.

Simulator

Select this option when you are targeting a simulator rather than a hardware
target. You must select Simulator to target your code to a C6000 simulator.

Enable High-Speed RTDX

Select this option to tell the code generation process to enable high-speed
RTDX for this model.

Board Custom Code

Entries in this group let you specify the locations of custom source files or
libraries or other functions. Five options provide access to text areas where you
enter files and file paths.

When you enter a path to a file, library, or other custom code, use the string

C6711DSK

$(install_dir)
to refer to the CCS installation directory.

Enter new paths or files (custom code items) one to a line. Include the full path
to the file for libraries and source code. Board custom code options do not
support functions that use return arguments or values. Only functions of type
void fname void are valid as entries in these parameters.

® Source files — you enter the full paths to source code files to use with this
target. By default there are no entries in this parameter.

® Include paths — Ifyou require additional files on your path, you add them
by typing the path into the text area. The default setting does not include
additional paths.

® Libraries — these entries identify specific libraries that the target requires.
They appear on the list by default if required. Add more as you require by
entering the full path to the library with the library file in the text area. No
additional libraries appear here in the default configuration.

® Initialize functions — If your project requires an initialize function,
enter it here. By default, this is empty.

® Terminate functions —enter a function to run when a program terminates.
The default setting is not to include a specific termination function.

CCS Board Name

Contains a list of all the boards defined in CCS Setup. From the list of available
boards, select the one that you are targeting your code for.

CCS Processor Name

Lists the processors on the board you selected for targeting in CCS board
name. In most cases, only one name appears because the board has one
processor. In the multiprocessor case, you select the processor by name from
the list.

Memory Pane

When you target any board, you need to specify the layout of the physical
memory on your processor and board to determine how use it for your program.
For supported boards, the board-specific target preferences blocks set the
default memory map.

5-197

C6711DSK

5-198

} C6000 Target Preferences = o] %]

| Sections | DSP/BIOS Ii
Physical memory

UM e R

SDRAM
Address: I 0x00000000
Length: I 000004000
Cantents: ICUde&Data .|

Board Info

LI Add | Remove |
Heap
[~ Create heap Heap size: 256
[~ Define lakel Heap lahel: W
L2 cache

¥ Enahle L2 cache

LY cache size: IJIB kh 'l

OK Apply | Cancel | Help

The Memory pane contains memory options in three areas:

¢ Physical Memory — specifies the processor and board memory map

® Heap — specifies whether you use a heap and determines the size in words
¢ L2 Cache — enables the L2 cache (where available) and sets the size in kB
Be aware that these options may affect the options on the Sections pane. You

can make selections here that change how you configure options on the
Sections pane.

C6711DSK

Most of the information about memory segments and memory allocation is
available from the online help system for Code Composer Studio.

Physical Memory Options

This list shows the physical memory segments available on the board and
processor. By default, target preferences blocks show the memory segments
found on the selected processor. In addition, the Memory pane on
preconfigured target preferences blocks shows the memory segments available
on the board, but off of the processor. C6711DSK boards provide SDRAM
memory segments by default

Name

When you highlight an entry on the Physical memory list, the name of the
entry appears here. To change the name of the existing memory segment, select
it in the Physical memory list and then type the new name here.

Note You cannot change the names of default processor memory segments.

To add a new physical memory segment to the list, click Add, replace the
temporary label in Name with the one to use, and press Return. Your new
segment appears on the list.

After you add the segment, you can configure the starting address, length, and
contents for the new segment. New segments start with code and data as the
type of content that can be stored in the segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as newsegment or
newSegment.

Address

Address reports the starting address for the memory segment showing in
Name. Address entries are in hexadecimal format and limited only by the
board or processor memory.

When you are using a processor-specific preferences block, the starting address
shown is the default value. You can change the starting value by entering the
new value directly in Address when you select the memory segment to change.

5-199

C6711DSK

5-200

Length

From the starting address, Length sets the length of the memory allocated to
the segment in Name. As in all memory entries, specify the length in
hexadecimal format, in minimum addressable data units (MADUs). For the
C6000 processor family, the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the length shown is
the default value. You can change the value by entering the new value directly
in this option.

Contents

Contents details the kind of program sections that you can store in the memory
segment in Name. As the processor type for the target preferences block
changes, the kinds of information you store in listed memory segments may
change. Generally, the Contents list contains these strings:

® Code — allow code to be stored in the memory segment in Name.
® Data — allow data to be stored in the memory segment in Name.

® Code and Data — allow code and data to be stored in the memory segment
in Name. When you add a new memory segment, this is the default setting
for the contents of the new element.

You may add or use as many segments of each type as you need, within the
limits of the memory on your processor.

Add

Click Add to add a new memory segment to the target memory map. When you
click Add, a new segment name appears, for example NEWMEM1, in Name and on
the Physical memory list. In Name, change the temporary name NEWMEM1 by
entering the new segment name. Entering the new name, or clicking Apply
updates the temporary name on the list to the name you enter.

Remove

This option lets you remove a memory segment from the memory map. Select
the segment to remove on the Physical memory list and click Remove to
delete the segment.

Create Heap

Selecting this option enables creating the heap, and enables the Heap size
option.

C6711DSK

Using this option you can create a heap in any memory segment on the
Physical memory list. Select the memory segment on the list and then select
Create heap to create a heap in the select segment. After you create the heap,
use the Heap size and Define label options to configure the heap.

The location of the heap in the memory segment is not under your control. The
only way to control the location of the heap in a segment is to make the segment
and the heap the same size. Otherwise, the compiler determines the location of
the heap in the segment.

Heap Size

After you select Create heap, this option lets you specify the size of the heap
in words. Enter the number of words in decimal format. When you enter the
heap size in decimal words, the system converts the decimal value to
hexadecimal format. You can enter the value directly in hexadecimal format as
well. Processors may support different maximum heap sizes.

Define Label

Selecting Create heap enables this option that allows you to name the heap.
Enter your label for the heap in the Heap label option.

Heap Label

Enabled by selecting Define label, you use this option to provide the label for
the heap. Any combination of characters is accepted for the label, except
reserved characters in C/C++ compilers.

Enable L2 Cache

C6711 processors support an L2 cache memory structure that you can
configure as SRAM and partial cache. Both the data memory and the program
share this second-level memory.

L2 Cache size

When you enable the L2 cache, use this list to determine the size of the cache
allotted. Select the size of the cache from the list.

Sections Pane

Options on this pane let you specify where various program sections should go
in memory. Program sections are distinct from memory segments — sections
are portions of the executable code stored in contiguous memory locations.
Commonly used sections include .text, .bss, .data, and .stack. Some sections

5-201

C6711DSK

relate to the compiler, some to DSP/BIOS, and some can be custom sections as
you require.

For more information about program sections and objects, refer to the CCS
online help.

} C6000 Target Preferences = o] %]

| DSP/BIOS li

Description: ¢ cpde

Placement: ISDRAM -I

Board Info hemary

Cormpiler sections

guitch
hss
far
_cinit

pinit LI

DEF/BIOS sections/objects

Description: Argument buffer

.ghlinit

tredata

.Sgsdata Placement: ISDRAM 'l
.ohj

‘hios LI
Data object placement: ISDRAM 'l
Code ohject placement; ISDRAM 'l

Custom sections

| Mame: I
Placement: I|RAM vl

LI Add | Remaove |

OK | Apply | Cancel | Help |

Within this pane, you configure the allocation of sections for Compiler,
DSP/BIOS, and Custom needs.

This table provides brief definitions of the kinds of sections in the Compiler
sections, DSP/BIOS sections/objects, and Custom sections lists in the pane.

5-202

C6711DSK

All sections do not appear on all lists. The list the string appears on is shown

in the table.

String Section List Description of the Section Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the code

.bios DSP/BIOS DSP/BIOS code if you are using DSP/BIOS
options in your program

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global, defined
as far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS startup
initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the target
program can read

.pinit Compiler Load allocation of the table of global object
constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Compiler The global stack

5-203

C6711DSK

5-204

String Section List Description of the Section Contents

.switch Compiler Jump tables for switch statements in the
executable code

.sysdata DSP/BIOS Data about DSP/BIOS
.sysinit DSP/BIOS DSP/BIOS initialization startup code
.sysmem Compiler Dynamically allocated object in the code

containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants

.trcdata DSP/BIOS TRC mask variable and its initial value

section load allocation

You can learn more about memory sections and objects in your Code Composer
Studio online help.

Compiler Sections

During program compilation, the C6000 compiler produces both uninitialized
and initialized blocks of data and code. These blocks get allocated into memory
as required by the configuration of your system. On the Compiler sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections. The initialized
sections are:

® .cinit

e .const

® .switch

e _text (created by the assembler)

These sections are uninitialized:

.bss (created by the assembler)
.far

.stack

.sysmem

C6711DSK

Other sections appear on the list as well:
® .data (created by the assembler)

® .cio

® .pinit

Note The C/C++ compiler does not use the .data section.

When you highlight a section on the list, Description shows a brief description
of the section. Also, Placement shows you where the section is presently
allocated in memory.

Description

Provides a brief explanation of the contents of the selected entry on the
Compiler sections list.

Placement

Shows you where the selected Compiler sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. C6711 DSK boards provide IRAM and SDRAM.

DSP/BIOS Sections

During program compilation, DSP/BIOS produces both uninitialized and
initialized blocks of data and code. These blocks get allocated into memory as
required by the configuration of your system. On the DSP/BIOS sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections.

Description

Provides a brief explanation of the contents of the selected DSP/BIOS sections
list entry.

Placement

Shows where the selected DSP/BIOS sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments available on
C6000 processors, and changes based on the processor you are using.

5-205

C6711DSK

5-206

DSP/BIOS Object Placement

Distinct from the entries on the DSP/BIOS sections list, DSP/BIOS objects like
STS or LOG, if your project uses them, get placed in the memory segment you
select from the DSP/BIOS Object Placement list. All DSP/BIOS objects use
the same memory segment. You cannot select the location for individual
objects.

Custom Sections

When your program uses code or data sections that are not included in either
the Compiler sections or DSP/BIOS sections lists, you add the new sections
to this list. Initially, the Custom sections list contains no fixed entries, just a
placeholder for a section for you to define.

Name

You enter the name for your new section here. To add a new section, click Add.
Then replace the temporary name with the name to use. Although the
temporary name includes a period at the beginning you do not need to include
the period in your new name. Names are case sensitive. NewSection is not the
same as newsection, or newSection.

Placement

With your new section added to the Name list, select the memory segment to
which to add your new section. Within the restrictions imposed by the
hardware and compiler, you can select any segment that appears on the list.

Add

Clicking Add lets you configure a new entry to the list of custom sections. When
you click Add, the block provides a new temporary name in Name. Enter the

new section name to add the section to the Custom sections list. After typing
the new name, click Apply to add the new section to the list. You can also click
OK to add the section to the list and close the dialog box.

Remove

To remove a section from the Custom sections list, select the section and click
Remove.

DSP/BIOS Pane

Options on this pane let you specify how to configure tasking features of
DSP/BIOS.

C6711DSK

The asynchronous task scheduler uses these options when you select the
Incorporate DSP/BIOS option in the model configuration set. By default,
Incorporate DSP/BIOS is selected and the Embedded Target for TI C6000
DSP creates separate DSP/BIOS tasks for each sample time in your Simulink
model.

DSP/BIOS tasking blocks provide parameters on their block dialog boxes so you
can specify the DSP/BIOS stack size and stack segment (where the stack is in
memory) for asynchronous tasks created by the DSP/BIOS Task and
DSP/BIOS Triggered Task blocks.

The code generation process uses the options on this pane to configure TSK
entries in the TSK Task Manager in CCS when it creates DSP/BIOS tasks.

When you clear the Incorporate DSP/BIOS option, you disable the options in
this pane. Your project does not include DSP/BIOS tasks, and Embedded
Target for TI C6000 DSP uses an interrupt-based scheduler.

For more information about tasks, refer to the Code Composer Studio online
help.

5-207

C6711DSK

5-208

} C6000 Target Preferences o [l PS
Board Info | - Memory | Siiione |DSF'IEIIOS|7

TSK Task Manager Properties

Default stack size (bytes): IIJDBE
Stack segment for static tasks: ISDRAM j
Stack segment for dynamic tasks: ISDRAM j

{must have a heap allocated)

OK Apply Cancel Help

Within this pane, you configure the options for DSP/BIOS tasks, such as the
task manager and scheduler configuration. Note that the Sections pane
includes DSP/BIOS configuration options as well. The options specify the stack
use and locations on the stack for static and dynamic tasks.

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU context
during thread preemption for task threads. This option sets the size of the

C6711DSK
|

DSP/BIOS stack in bytes allocated for each task. 4096 bytes is the default
value. You can set any size up to the limits for the processor. Set the stack
size so that tasks do not use more memory than you allocate. While any
task can use more memory than the stack includes, this might cause the
task to write into other memory or data areas, possibly causing
unpredictable behavior.

Stack segment for static tasks
Use this option to specify where to allocate the stack for static tasks. Static
tasks are created whether or not they are needed for operation, compared
to dynamic tasks that the system creates as needed. Tasks that your
program uses often might be good candidates for static tasks. Infrequently
used tasks usually work best as dynamic tasks.

The list offers options SDRAM and ISRAM for locating the stack in memory,
with SDRAM as the default section. The Memory pane provide more options
for the physical memory on the processor.

Stack segment for dynamic tasks

Like static tasks, dynamic tasks use a stack as well. Setting this option
specifies where to locate the stack for dynamic tasks. In this case, SDRAM is
the only valid stack location in memory.

See Also Custom C6000

5-209

C6711 DSK ADC

Purpose
Library

Description

Line In
Ca711 DSK o
ADC

ADC

5-210

Digitized output from codec to processor
C6711 DSK Board Support in Embedded Target for TI C6000 DSP

Use the C6711 DSK ADC (analog-to-digital converter) block to capture and
digitize analog signals from external sources, such as signal generators,
frequency generators or audio devices. Placing an C6711 DSK ADC block in
your Simulink block diagram lets you use the audio coder-decoder module
(codec) on the C6711 DSK to convert an analog input signal to a digital signal
for the digital signal processor.

Most of the configuration options in the block affect the codec. However, the
Output data type, Samples per frame and Scaling options are related to the
model you are using in Simulink, the signal processor on the board, or direct
memory access (DMA) on the board. In the following table, you find each option
listed with the C6711 DSK hardware affected.

Option Affected Hardware

ADC Source Codec

Mic Codec

Output data type TMS320C6711 digital signal processor
Samples per frame Direct memory access functions
Scaling TMS320C6711 digital signal processor
Source gain (dB) Codec

You can select one of three input sources from the ADC source list:

¢ Line In — the codec accepts input from the line in connector (LINE IN) on
the board’s mounting bracket.

® Mic — the codec accepts input from the microphone connector (MIC IN) on
the board mounting bracket.

* Loopback — routes the analog signal from the codec output back to the
codec input. Can be useful in some feedback applications.

C6711 DSK ADC

|

When you select Mic for ADC source, you can select the +20 dB Mic gain boost
check box to add 20 dB to the microphone input signal before the codec digitizes
the signal.

Selecting Loopback for ADC source configures the C6711 DSK to capture the
output from the codec as the input to the C6711 DSK ADC. When you select
Loopback, your model must include both the C6711 DSK ADC and C6711 DSK
DAC blocks.

Source gain (dB) lets you add gain to the input signal before the A/D
conversion. When you select Loopback as the ADC source, your specified
source gain is not added to the input signal. Select the appropriate gain from
the list.

Dialog Box

=] source Block Parameters: ADC il
—CE/M1DSK ADC (mask)

Configures the codec and the TM3320CE711 peripherals to output & constant
strearmn of data collected fram the analog jacks on the CE711 DSK board. The
following codec characteristics cannot be changed:

sampling rate - 8 KHz

data format - linear 16 bit

no. of channels -1 (mono)

—Farameters

ADC source IR - |

7 +20 dB Mic gain boost

Outputdatalype:l Double

Scaling:l Maormalize

Lef Lef Ll

Source gain (dEl):I 0.0

mamples per frame:
(54

[~ Inherit sample time

Ok I Cancel Help

ADC source
The input source to the codec. Line In is the default.

5-211

C6711 DSK ADC

See Also

5-212

+20 dB Mic gain boost
Boosts the input signal by +20dB when ADC source is Mic. Gain is applied
before analog-to-digital conversion.

Output data type
Selects the word length and shape of the data from the codec. By default,
double is selected. Options are Double, Single, and Integer

Scaling
Selects whether the codec data is unmodified, or normalized to the output
range to £1.0, based on the codec data format. Select either Normalize or
Integer Value. Normalize is the default setting.

Source gain (dB)
Specifies the amount to boost the input before conversion. Select from the
range 0.0 to 12.0 dB in 1.5 dB increments. Applies to the input signal when
ADC source is Line In or Mic In.

Samples per frame
Creates frame-based outputs from sample-based inputs. This parameter
specifies the number of samples of the signal the block buffers internally
before it sends the digitized signals, as a frame vector, to the next block in
the model. 64 samples per frame is the default setting. Notice that the
frame rate depends on the sample rate and frame size. For example, if your
input is 32 samples per second, and you select 64 samples per frame, the
frame rate is one frame every two seconds. The throughput remains the
same at 32 samples per second.

C6711 DSK DAC

C6711 DSK DAC

Purpose
Library

Description

Line Cut
CE711 D5k
LAC

Use codec to convert digital input to analog output
C6711 DSK Board Support in Embedded Target for TI C6000 DSP

Adding the C6711 DSK DAC (digital-to-analog converter) block to your
Simulink model provides the means to output an analog signal to the LINE
OUT connection on the C6711 DSK mounting bracket. When you add the
C6711 DSK DAC block, the digital signal received by the codec is converted to
an analog signal. After converting the digital signal to analog form
(digital-to-analog (D/A) conversion), the codec sends the signal to the output
audio jack.

One of the configuration options in the block affects the codec. The remaining
options relate to the model you are using in Simulink and the signal processor
on the board. In the following table, you find each option listed with the C6711
DSK hardware affected by your selection.

Option Affected Hardware

DAC attenuation Codec

Overflow mode TMS320C6711 Digital Signal Processor
Scaling TMS320C6711 Digital Signal Processor

To attenuate the output signal after the D/A conversion, select an attenuation
from the DAC attenuation list. Available attenuation values range from 0.0 to
36.0 dB in 1.5 dB increments. You must select from the list; you cannot enter a
value for the attenuation.

5-213

C6711 DSK DAC

Dialog Box

|2] sink Block Parameters: DAC X|
—CE/T1DSK DA (mask)

Configures the codec and the TMS320C6711 peripherals to send a stream of data
to the output jack on the CE711 DSK bhoard. The following codec characteristics
cannot be changed:

sampling rate - 8 KHz

data format - linear 16 hit

no. af channels -1 (mana)

—Parameters
scaling: [N EkE]
DAC attenuation (dB): | 0.0 |
Cherflow mu:nde:l Saturate j
O I Cancel Help | Ay |
Scaling

Selects whether the input to the codec represents unmodified data, or data
that has been normalized to the range +1.0. Matching the setting for the
C6711 DSK ADC block is usually appropriate here.

DAC attenuation
Specifies the amount to attenuate the block output after D/A conversion.

Overflow mode

Determines how the codec responds to data that is outside the range
specified by the Scaling parameter.

See Also C6711 DSK ADC

5-214

C6711 DSK DIP Switch

Purpose
Library

Description

CE711 DSk
DIP Switch

Switch

Simulate or read DIP switches

C6711 DSK Board Support in Embedded Target for TI C6000 DSP

Added to your model, this block behaves differently in simulation than in code

generation and targeting.

Simulation — the options USER_SW1, USER_SW2, and USER_SW3 generate
output to simulate the settings of the user-defined dual inline pin (DIP)
switches on your C6711 DSK. Each option turns the associated DIP switch on
when you select it. The switches are independent of one another.

By defining the switches to represent actions on your target, DIP switches let
you modify the operation of your process by reconfiguring the switch settings.

Use the Data type to specify whether the DIP switch options output an integer
or a logical string of bits to represent the status of the switches. The table that
follows presents all the option setting combinations with the result of your

Data type selection.

Option Settings to Simulate the User DIP Switches on the C6711 DSK

USER_SW1 USER_SW2 USER_SW3 Boolean Integer
(LSB) (MSB) Output Output
Cleared Cleared Cleared 000 0
Selected Cleared Cleared 001 1
Cleared Selected Cleared 010 2
Selected Selected Cleared 011 3
Cleared Cleared Selected 100 4
Selected Cleared Selected 101 5
Cleared Selected Selected 110 6
Selected Selected Selected 111 7

Selecting the Integer data type results in the switch settings generating
integers in the range from 0 to 7 (uint8), corresponding to converting the string

5-215

C6711 DSK DIP Switch

5-216

of individual switch settings to a decimal value. In the Boolean data type, the
output string presents the separate switch setting for each switch, with the
USER_SWI1 status represented by the least significant bit (LSB) and the status
of USER_SWS3 represented by the most significant bit (MSB).

Code generation and targeting — the code generated by the block reads the
physical switch settings of the user switches on the board and reports them as
shown in Table . Your process uses the result in the same way whether in
simulation or in code generation. In code generation and when running your
application, the block code ignores the settings for USER_SW1, USER_SW2,
and USER_SW3 in favor of reading the hardware switch settings. When the
block reads the DIP switches, it reports the results as either a Boolean string
or an integer value as Output Values From The User DIP Switches on the
C6711 DSK shows

Output Values From The User DIP Switches on the €C6711 DSK

USER_SW1 USER_SW2 USER_SW3 Boolean Integer
(LSB) (MSB) Output Output
Off Off Off 000 0
On Off Off 001 1
Off On Off 010 2
On On Off 011 3
Off Off On 100 4
On Off On 101 5
Off On On 110 6
On On On 111 7

C6711 DSK DIP Switch

Dialog Box

|

=] Block Parameters: Switch2 x|

—CE711 DSK DIP Switch [mask] [link]

Outputs state of uzer-definable switches located on CE711 DSE board. For
sinulation, checkboxes in the block dislog are used in place of the physical
awitches,

In Boolean mode, outputs a vector of 3 boolean values, with the least-significant bit
[LSE] first. In Integer mode, outputz a wintd from O to 7.

—Parameter

[~ USER_Sw2
[~ USER_5'w3 [MSB)
Data type: | Boaolean LI

Sample time:
f1.0

Ok Cancel | Help |

Opening this dialog box causes a running simulation to pause. Refer to
“Changing Source Block Parameters” in your online Simulink documentation
for details.
USER_SW1

Simulate the status of the user-defined DIP switch on the board.

USER_SW2
Simulate the status of the user-defined DIP switch on the board.

USER_SW3
Simulate the status of the user-defined DIP switch on the board.

Data type

Determines how the block reports the status of the user-defined DIP
switches. Boolean is the default, indicating that the output is a logical
string of three bits.

Each bit represents the status of one DIP switch; the LSB is switch
USER_SW1 and the MSB is switch USER_SW3. The other data type,
Integer, converts the logical string to an equivalent unsigned 8-bit (uint8)

5-217

C6711 DSK DIP Switch

decimal value. For example, if the logical string is 101, the decimal
conversion yields 5.

Sample time

Specifies the time between samples of the signal. The default is 1 second
between samples, for a sample rate of one sample per second
(1/Sample time).

5-218

C6711 DSK LED

Purpose
Library

Description

CE711 DSk
LED

Dialog Box

Control LEDs
C6711 DSK Board Support in Embedded Target for TI C6000 DSP

Adding the C6711 DSK LED block to your Simulink block diagram lets you
trigger all three of the user red light emitting diodes (LED) on the C6711 DSK.
To use the block, send a nonzero real scalar to the block. The C6711 DSK LED
block triggers all three user LEDs located on the C6711 DSK.

When you add this block to a model, and send a real scalar to the block input,
the block sets the LED state based on the input value it receives:

® When the block receives an input value equal to 0, the specified LEDs are
turned off (disabled)

® When the block receives a nonzero input value, the specified LEDs are
turned on (enabled)

To activate the block, send it a scalar of any real data type. Vectors do not work
to activate LEDs; nor do complex numbers as scalars or vectors.

All LEDs maintain their state until their controlling C6711 DSK LED block
receives an input value that changes the state. Enabled LEDs stay on until the
block receives an input value equal to zero and turns the LEDs off; disabled
LEDs stays off until turned on. Resetting the C6711 DSK turns off all user
LEDs.

Block Parameters: LED x|

"CEH 105K LED [mask]

A non-zemno input to this block enables the selected LED. & zero input to
thiz block dizables the selected LED.

Cancel | Help | Spply |

This dialog box does not have any user-selectable options.

5-219

C6711 DSK RESET

Purpose
Library

Description

Reset
CE711 D5k

Dialog Box

5-220

Reset to initial conditions
C6711 DSK Board Support in Embedded Target for TI C6000 DSP

Double-clicking this block in a Simulink model window resets the C6711 DSK
that is running the executable code built from the model. When you
double-click the C6713 DSK RESET block, the block runs the software reset
function provided by CCS that resets the processor on your C6711 DSK.
Applications running on the board stop and the signal processor returns to the
initial conditions you defined.

Before you build and download your model, add the block to the model as a
stand-alone block. You do not need to connect the block to any block in the
model. When you double-click this block in the block library it resets your
C6711 DSK. In other words, anytime you double-click a C6711 DSK RESET
block you reset your C6711 DSK.

This block does not have settable options and does not provide a user interface
dialog box.

C6713DSK

Purpose
Library

Description

CerF13D5K

Configure model for C6713 DSP Starter Kit
Target Preferences in Embedded Target for TI C6000 DSP for TI DSP

Options on the block mask let you set features of code generation for your
C6713 DSP Starter Kit target. Adding this block to your Simulink model
provides access to the processor hardware settings you need to configure when
you generate code from Real-Time Workshop to run on the target.

Any model that you target to the C6713 DSK must include this block, or the
Custom C6000 target preferences block. Real-Time Workshop returns an error
message if a target preferences block is not present in your model.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to set the
target preferences for the model.

The processor and target options you specify on this block are:

¢ Target board information
® Memory mapping and layout

¢ Allocation of the various code sections, such as compiler, DSP/BIOS, and
custom sections

Setting the options included in this dialogbox results in identifying your target
to Real-Time Workshop, Embedded Target for TI C6000 DSP, and Simulink,
and configuring the memory map for your target. Both steps are essential for
targeting any board that is custom or explicitly supported, such as the C6711
DSK or the DM642 EVM.

Unlike most other blocks, you cannot open the block dialog box for this block
until you add the block to a model. When you try to open the block dialog, the
block attempts to connect to your target. It cannot make the connection when
the block is in the library and returns an error message.

5-221

C6713DSK

Generating Code from Model Subsystems

Real-Time Workshop provides the ability to generate code from a selected
subsystem in a model. To generate code for the C6713 DSK from a subsystem,
the subsystem model must include a C6713DSK target preferences block.

Dialog Box

) C6000 Target Preferences\C671. & ||:| |£|

Board Info | hemary | Sections |DSF'IEIIOS |7

Board Properties

Board type: |o571308K

Dievice: IEHB j

CPU clock speed: lﬁ hHz

I~ Simulator " Enahle High-Speed RTONX

Board Custorn Code

B
Include paths

Libraries
Initialize functions

Terminate functions

[=

Link to Code Cormposer Studio
CCE board name:

3 Cycle Accurate Simulator
CCS processar harne:
[TMS32006400 -]

0K | Apply Cancel | Help |

All target preferences block dialog boxes provide tabbed access to panes the
following panes with options you set for the target processor and target board:

¢ Board info — Select the target board and processor, set the clock speed, and
identify the target.

5-222

C6713DSK

® Memory — Set the memory allocation and layout on the target processor
(memory mapping).

® Sections — Determine the arrangement and location of the sections on the
target processor such as where to put the DSP/BIOS and compiler
information.

* DSP/BIOS — Specify how to configure tasking features of DSP/BIOS.

Board Info Pane

The following options appear on the Board Info pane for the C6000 Target
Preferences dialog box.

Board Type

Lets you enter the type of board you are targeting with the model. You can
enter Custom to support any board based on one of the supported processors, or
enter the name of one of the supported boards, such as C6711DSK. Board type
for this block is set to C6713 DSK by default.

Device

Lets you select the type of processor on the board you select in CCS board
name. The processor type you enter determines the contents and setting for
options on the Memory and Sections panes in this dialog box. If you are
targeting one of the supported boards, Device is disabled and the selected
device is fixed.

CPU Clock Speed (MHz)

Shows the clock speed of the processor on your target. When you enter a value,
you are not changing the CPU clock rate. Instead, you are reporting the actual
rate. If the value you enter does not match the rate on the target, your model’s
real-time results may be wrong, and code profiling results are not correct.

Enter the actual clock rate the board uses. The rate you enter in this field does
not change the rate on the board. Setting CPU clock speed to the actual board
rate allows the code you generate to run correctly according to the actual clock
rate of the hardware.

When you generate code for C6000 targets from Simulink models, you may
encounter the software timer. The timer is invoked automatically to handle
and create interrupts to drive your model if either of the following conditions
occur:

¢ If your model does not include ADC or DAC blocks

5-223

C6713DSK

5-224

® When the processing rates in your model change (the model is multirate)

Correctly generating interrupts for your model depends on the clock rate of the
CPU on your target. You can change the rate with the DIP switches on the
board or from one of the software utilities provided by Texas Instruments.

For the timer software to calculate the interrupts correctly, Embedded Target
for TI C6000 DSP needs to know the actual clock rate of your target processor
as you configured it. CPU clock speed lets you tell the timer the rate at which
your target CPU runs, which is the rate to use to match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock speed to calculate
the time for each interrupt. For example, if your model includes a sine wave
generator block running at 1 KHz feeding a signal into an FIR filter block, the
timer needs to create interrupts to generate the sine wave samples at the
proper rate. Using the clock rate you choose, 100 MHz for example, the timer
calculates the sine generator interrupt period as follows for the sine block:

¢ Sine block rate = 1 KHz, or 0.001 s/sample
¢ CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires
100,000,000/1000 = 1 Sine block interrupt per 1,000,000 clock ticks

So you must report the correct clock rate or the interrupts come at the wrong
times and the results are incorrect.

Simulator

Select this option when you are targeting a simulator rather than a hardware
target. You must select Simulator to target your code to a C6000 simulator.
Enable High-Speed RTDX

Select this option to tell the code generation process to enable high-speed
RTDX for code generated from this model.

Board Custom Code

Entries in this group let you specify the locations of custom source files or
libraries or other functions. Five options provide access to text areas where you
enter files and file paths.

When you enter a path to a file, library, or other custom code, use the string

$(install dir)

C6713DSK

to refer to the CCS installation directory.

Enter new paths or files (custom code items) one to a line. Include the full path
to the file for libraries and source code. Board custom code options do not
support functions that use return arguments or values. Only functions of type
void fname void are valid as entries in these parameters.

® Source files — you enter the full paths to source code files to use with this
target. By default there are no entries in this parameter.

® Include paths — If you require additional files on your path, you add them
by typing the path into the text area. The default setting does not include
additional paths.

® | ibraries — these entries identify specific libraries that the target requires.
They appear on the list by default if required. Add more as you require by
entering the full path to the library with the library file in the text area. No
additional libraries appear here in the default configuration.

® Initialize functions — If your project requires an initialize function,
enter it here. By default, this is empty.

® Terminate functions —enter a function to run when a program terminates.
The default setting is not to include a specific termination function.

CCS Board Name

Contains a list of all the boards defined in CCS Setup. From the list of available
boards, select the one that you are targeting your code for.

CCS Processor Name

Lists the processors on the board you selected for targeting in CCS board
name. In most cases, only one name appears because the board has one
processor. In the multiprocessor case, you select the processor by name from
the list.

Memory Pane

When you target any board, you need to specify the layout of the physical
memory on your processor and board to determine how use it for your program.
For supported boards, the board-specific target preferences blocks set the
default memory map.

5-225

C6713DSK

5-226

} C6000 Target Preferences = o] %]

| Sections | DSP/BIOS Ii
Physical memory

UM e R

SDRAM
Address: I 0x00000000
Length: I 000030000
Cantents: ICUde&Data .|

Board Info

LI Add | Remove |
Heap
[~ Create heap Heap size: 256
[~ Define lakel Heap lahel: W
L2 cache

¥ Enahle L2 cache

LY cache size: IEd kh 'l

OK Apply | Cancel | Help

The Memory pane contains memory options in three areas:

¢ Physical Memory — specifies the processor and board memory map

® Heap — specifies whether you use a heap and determines the size in words
¢ L2 Cache — enables the L2 cache (where available) and sets the size in kB
Be aware that these options may affect the options on the Sections pane. You

can make selections here that change how you configure options on the
Sections pane.

C6713DSK

Most of the information about memory segments and memory allocation is
available from the online help system for Code Composer Studio.

Physical Memory Options

This list shows the physical memory segments available on the board and
processor. By default, target preferences blocks show the memory segments
found on the selected processor. In addition, the Memory pane on
preconfigured target preferences blocks shows the memory segments available
on the board, but off of the processor. C6713 DSK boards provide IRAM and
SDRAM memory segments by default

Name

When you highlight an entry on the Physical memory list, the name of the
entry appears here. To change the name of the existing memory segment, select
it in the Physical memory list and then type the new name here.

Note You cannot change the names of default processor memory segments.

To add a new physical memory segment to the list, click Add, replace the
temporary label in Name with the one to use, and press Return. Your new
segment appears on the list.

After you add the segment, you can configure the starting address, length, and
contents for the new segment. New segments start with code and data as the
type of content that can be stored in the segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as newsegment or
newSegment.

Address

Address reports the starting address for the memory segment showing in
Name. Address entries are in hexadecimal format and limited only by the
board or processor memory.

When you are using a processor-specific preferences block, the starting address
shown is the default value. You can change the starting value by entering the
new value directly in Address when you select the memory segment to change.

5-227

C6713DSK

5-228

Length

From the starting address, Length sets the length of the memory allocated to
the segment in Name. As in all memory entries, specify the length in
hexadecimal format, in minimum addressable data units (MADUs). For the
C6000 processor family, the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the length shown is
the default value. You can change the value by entering the new value directly
in this option.

Contents

Contents details the kind of program sections that you can store in the memory
segment in Name. As the processor type for the target preferences block
changes, the kinds of information you store in listed memory segments may
change. Generally, the Contents list contains these strings:

® Code — allow code to be stored in the memory segment in Name.
® Data — allow data to be stored in the memory segment in Name.

® Code and Data — allow code and data to be stored in the memory segment
in Name. When you add a new memory segment, this is the default setting
for the contents of the new element.

You may add or use as many segments of each type as you need, within the
limits of the memory on your processor.

Add

Click Add to add a new memory segment to the target memory map. When you
click Add, a new segment name appears, for example NEWMEM1, in Name and on
the Physical memory list. In Name, change the temporary name NEWMEM1 by
entering the new segment name. Entering the new name, or clicking Apply
updates the temporary name on the list to the name you enter.

Remove

This option lets you remove a memory segment from the memory map. Select
the segment to remove on the Physical memory list and click Remove to
delete the segment.

Create Heap

Selecting this option enables creating the heap, and enables the Heap size
option.

C6713DSK

Using this option you can create a heap in any memory segment on the
Physical memory list. Select the memory segment on the list and then select
Create heap to create a heap in the select segment. After you create the heap,
use the Heap size and Define label options to configure the heap.

The location of the heap in the memory segment is not under your control. The
only way to control the location of the heap in a segment is to make the segment
and the heap the same size. Otherwise, the compiler determines the location of
the heap in the segment.

Heap Size

After you select Create heap, this option lets you specify the size of the heap
in words. Enter the number of words in decimal format. When you enter the
heap size in decimal words, the system converts the decimal value to
hexadecimal format. You can enter the value directly in hexadecimal format as
well. Processors may support different maximum heap sizes.

Define Label

Selecting Create heap enables this option that allows you to name the heap.
Enter your label for the heap in the Heap label option.

Heap Label

Enabled by selecting Define label, you use this option to provide the label for
the heap. Any combination of characters is accepted for the label, except
reserved characters in C/C++ compilers.

Enable L2 Cache

C6713 processors support an L2 cache memory structure that you can
configure as SRAM and partial cache.

L2 Cache size

When you enable the L2 cache, use this list to determine the size of the cache
allotted. Select the size of the cache from the list.

Sections Pane

Options on this pane let you specify where various program sections should go
in memory. Program sections are distinct from memory segments — sections
are portions of the executable code stored in contiguous memory locations.
Commonly used sections include .text, .bss, .data, and .stack. Some sections
relate to the compiler, some to DSP/BIOS, and some can be custom sections as
you require.

5-229

C6713DSK

For more information about program sections and objects, refer to the CCS
online help.

} C6000 Target Preferences = o] %]

| DSP/BIOS li

4 | Description: ¢ gcode

Board Info | hemary

Cormpiler sections

guitch
hss

far Flacement: ISDRAM .l
.cinit
pinit LI

DEF/BIOS sections/objects

Description: Argument huffer
.ghlinit
tredata

.sg_sdata Placement: |IRAM 'I
.ohj

-hiosg LI

Data ohject placement: ISDRAM 'l
Code ohject placement: ISDRAM 'l
Custormn sections

| Mame: I
Placement: I|RAM vl

LI Audd | Remaove |

0K | Apply | Cancel | Help |

Within this pane, you configure the allocation of sections for Compiler,
DSP/BIOS, and Custom needs.

This table provides brief definitions of the kinds of sections in the Compiler
sections, DSP/BIOS sections/objects, and Custom sections lists in the pane.

5-230

C6713DSK

All sections do not appear on all lists. The list the string appears on is shown

in the table.

String Section List Description of the Section Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the code

.bios DSP/BIOS DSP/BIOS code if you are using DSP/BIOS
options in your program

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global, defined
as far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS startup
initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the target
program can read

.pinit Compiler Load allocation of the table of global object
constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Compiler The global stack

5-231

C6713DSK

5-232

String Section List Description of the Section Contents

.switch Compiler Jump tables for switch statements in the
executable code

.sysdata DSP/BIOS Data about DSP/BIOS
.sysinit DSP/BIOS DSP/BIOS initialization startup code
.sysmem Compiler Dynamically allocated object in the code

containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants

.trcdata DSP/BIOS TRC mask variable and its initial value

section load allocation

You can learn more about memory sections and objects in your Code Composer
Studio online help.

Compiler Sections

During program compilation, the C6000 compiler produces both uninitialized
and initialized blocks of data and code. These blocks get allocated into memory
as required by the configuration of your system. On the Compiler sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections. The initialized
sections are:

® .cinit

e .const

® .switch

e _text (created by the assembler)

These sections are uninitialized:

.bss (created by the assembler)
.far

.stack

.sysmem

C6713DSK

Other sections appear on the list as well:
® .data (created by the assembler)

® .cio

® .pinit

Note The C/C++ compiler does not use the .data section.

When you highlight a section on the list, Description shows a brief description
of the section. Also, Placement shows you where the section is presently
allocated in memory.

Description

Provides a brief explanation of the contents of the selected entry on the
Compiler sections list.

Placement

Shows you where the selected Compiler sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. For C6713 DSK targets, the list include IRAM and
SDRAM segments.

DSP/BIOS Sections

During program compilation, DSP/BIOS produces both uninitialized and
initialized blocks of data and code. These blocks get allocated into memory as
required by the configuration of your system. On the DSP/BIOS sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections.

Description

Provides a brief explanation of the contents of the selected DSP/BIOS sections
list entry.

Placement

Shows where the selected DSP/BIOS sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments available on
C6000 processors, and changes based on the processor you are using.

5-233

C6713DSK

5-234

DSP/BIOS Object Placement

Distinct from the entries on the DSP/BIOS sections list, DSP/BIOS objects like
STS or LOG, if your project uses them, get placed in the memory segment you
select from the DSP/BIOS Object Placement list. All DSP/BIOS objects use
the same memory segment. You cannot select the location for individual
objects.

Custom Sections

When your program uses code or data sections that are not included in either
the Compiler sections or DSP/BIOS sections lists, you add the new sections
to this list. Initially, the Custom sections list contains no fixed entries, just a
placeholder for a section for you to define.

Name

You enter the name for your new section here. To add a new section, click Add.
Then replace the temporary name with the name to use. Although the
temporary name includes a period at the beginning you do not need to include
the period in your new name. Names are case sensitive. NewSection is not the
same as newsection, or newSection.

Placement

With your new section added to the Name list, select the memory segment to
which to add your new section. Within the restrictions imposed by the
hardware and compiler, you can select any segment that appears on the list.

Add

Clicking Add lets you configure a new entry to the list of custom sections. When
you click Add, the block provides a new temporary name in Name. Enter the
new section name to add the section to the Custom sections list. After typing

the new name, click Apply to add the new section to the list. You can also click
OK to add the section to the list and close the dialog box.

Remove

To remove a section from the Custom sections list, select the section and click
Remove.

DSP/BIOS Pane

Options on this pane let you specify how to configure tasking features of
DSP/BIOS.

C6713DSK

The asynchronous task scheduler uses these options when you select the
Incorporate DSP/BIOS option in the model configuration set. By default,
Incorporate DSP/BIOS is selected and the Embedded Target for TI C6000
DSP creates separate DSP/BIOS tasks for each sample time in your Simulink
model.

DSP/BIOS tasking blocks provide parameters on their block dialog boxes so you
can specify the DSP/BIOS stack size and stack segment (where the stack is in
memory) for asynchronous tasks created by the DSP/BIOS Task and
DSP/BIOS Triggered Task blocks.

The code generation process uses the options on this pane to configure TSK
entries in the TSK Task Manager in CCS when it creates DSP/BIOS tasks.

When you clear the Incorporate DSP/BIOS option, you disable the options in
this pane. Your project does not include DSP/BIOS tasks, and Embedded
Target for TI C6000 DSP uses an interrupt-based scheduler.

For more information about tasks, refer to the Code Composer Studio online
help.

5-235

C6713DSK

5-236

} C6000 Target Preferences o [l PS

Board Info Memary | Sections |DSF';’EIIO

TSK Task Manager Properties

Default stack size (bytes): IIJDBE
Stack segment for static tasks: I'RAM j
Stack segment for dynamic tasks: ISDRAM j

{must have a heap allocated)

OK Apply Cancel Help

Within this pane, you configure the options for DSP/BIOS tasks, such as the
task manager and scheduler configuration. Note that the Sections pane
includes DSP/BIOS configuration options as well. The options specify the stack
use and locations on the stack for static and dynamic tasks.

Default stack size (bytes)

DSP/BIOS uses a stack to save and restore variables and CPU context
during thread preemption for task threads. This option sets the size of the

C6713DSK
|

DSP/BIOS stack in bytes allocated for each task. 4096 bytes is the default
value. You can set any size up to the limits for the processor. Set the stack
size so that tasks do not use more memory than you allocate. While any
task can use more memory than the stack includes, this might cause the
task to write into other memory or data areas, possibly causing
unpredictable behavior.

Stack segment for static tasks
Use this option to specify where to allocate the stack for static tasks. Static
tasks are created whether or not they are needed for operation, compared
to dynamic tasks that the system creates as needed. Tasks that your
program uses often might be good candidates for static tasks. Infrequently
used tasks usually work best as dynamic tasks.

The list offers options SDRAM and IRAM for locating the stack in memory,
with SDRAM as the default section. The Memory pane provide more options
for the physical memory on the processor.

Stack segment for dynamic tasks

Like static tasks, dynamic tasks use a stack as well. Setting this option
specifies where to locate the stack for dynamic tasks. In this case, SDRAM is
the only valid stack location in memory.

See Also Custom C6000

5-237

C6713 DSK ADC

Purpose
Library

Description

Line In
Ca713 DSK P
ALC

ADC

5-238

Digitized signal output from codec to processor
C6713 DSK Board Support in Embedded Target for TI C6000 DSP

Use the C6713 DSK ADC (analog-to-digital converter) block to capture and
digitize analog signals from external sources, such as signal generators,
frequency generators or audio devices. Placing an C6713 DSK ADC block in
your Simulink block diagram lets you use the audio coder-decoder module
(codec) on the C6713 DSK to convert an analog input signal to a digital signal
for the digital signal processor.

Most of the configuration options in the block affect the codec. However, the
Output data type, Samples per frame and Scaling options are related to the
model you are using in Simulink, the signal processor on the board, or direct
memory access (DMA) on the board. In the following table, you find each option
listed with the C6713 DSK hardware affected.

Option Affected Hardware

ADC source Codec

Mic Codec

Output data type TMS320C6713 digital signal processor
Samples per frame Direct memory access functions
Scaling TMS320C6713 digital signal processor
Source gain (dB) Codec

You can select one of three input sources from the ADC source list:

e Line In— the codec accepts input from the line in connector (LINE IN) on
the board’s mounting bracket.

® Mic — the codec accepts input from the microphone connector (MIC IN) on
the board mounting bracket.

® | oopback —routes the analog signal from the codec output back to the codec
input. Can be useful in some feedback applications.

C6713 DSK ADC

Use the Stereo check box to indicate whether the audio input is monaural or
stereo. Clear the check box to choose monaural audio input. Select the check
box to enable stereo audio input. Monaural (mono) input is left channel only,
but the output sends left channel content to both the left and right output
channels; stereo uses the left and right channels on input and output.

The block uses frame-based processing of inputs, buffering the input data into
frames at the specified samples per frame rate. In Simulink, the block puts
monaural data into an N-element column vector. Stereo data input forms an
N-by-2 matrix with N data values and two stereo channels (left and right).

When the samples per frame setting is more than one, each frame of data is
either the N-element vector (monaural input) or N-by-2 matrix (stereo input).
For monaural input, the elements in each frame form the column vector of
input audio data. In the stereo format, the frame is the matrix of audio data
represented by the matrix rows and columns — the rows are the audio data
samples and the columns are the left and right audio channels.

When you select Mic for ADC source, you can select the +20 dB Mic gain boost
check box to add 20 dB to the microphone input signal before the codec digitizes
the signal.

Source gain (dB) lets you add gain to the input signal before the A/D
conversion. When you select Loopback as the ADC source, your specified
source gain is not added to the input signal. Select the appropriate gain from
the list.

5-239

C6713 DSK ADC

Dialog Box

L] source Block Parameters: ADC il
~CEA1 305K ADC (mask)

Configures the AIC23 codec and the TMS320C6713 peripherals to output a stream
of data collected from the analog jacks an the Ch713 D3P Starter Kit board.

During simulation, this block simply outputs zeros.

—Farameters

A R -

[T +20 dB hic gain boost
¥ Steren

Sampling rate (Hz): I B kHz

Ward length: | 16-bit

Output datatype:l Single

Led Led Le] Lo

Scaling:l Marmalize

Samples per frame:
(54

[~ Inherit sample tima

0K I Cancel Help

ADC source
The input source to the codec. Line In is the default. Selecting the Mic
option enables the +20 dB Mic gain boost option.

+20 dB Mic gain boost
Boosts the input signal by +20dB when ADC source is Mic. Gain is applied
before analog-to-digital conversion.

5-240

C6713 DSK ADC

Stereo
Indicates whether the input audio data is in monaural or stereo format.
Select the check box to enable stereo input. Clear the check box when you
input monaural data. By default, stereo operation is enabled.

Output data type
Selects the word length and shape of the data from the codec. By default,
double is selected. Options are Double, Single, and Integer.

Scaling
Selects whether the codec data is unmodified, or normalized to the output
range to 1.0, based on the codec data format. Select either Normalize or
Integer Value. Normalize is the default setting.

Samples per frame
Creates frame-based outputs from sample-based inputs. This parameter
specifies the number of samples of the signal the block buffers internally
before it sends the digitized signals, as a frame vector, to the next block in
the model. 64 samples per frame is the default setting. Notice that the
frame rate depends on the sample rate and frame size. For example, if your
input is 8kHz samples per second, and you select 64 samples per frame, the
frame rate is 125 frames every second. The throughput remains the same
at 64 samples per second.

See Also C6713 DSK DAC

5-241

C6713 DSK DAC

Purpose

Library

Description

Ca713 DSK

DAC

5-242

DACH

Configure codec to convert digital input to analog output
C6713 DSK Board Support in Embedded Target for TI C6000 DSP

Adding the C6713 DSK DAC (digital-to-analog converter) block to your
Simulink model provides the means to output an analog signal to the analog
output jack on the C6713 DSK. When you add the C6713 DSK DAC block, the
digital signal received by the codec is converted to an analog signal. After
converting the digital signal to analog form (digital-to-analog (D/A)
conversion), the codec sends the signal to the output jack.

One of the configuration options in the block affects the codec. The remaining
options relate to the model you are using in Simulink and the signal processor
on the board. In the following table, you find each option listed with the
C6713 DSK hardware affected by your selection.

Option Affected Hardware

Overflow mode TMS320C6713 Digital Signal Processor
Scaling TMS320C6713 Digital Signal Processor
Word length Codec

C6713 DSK DAC

Dialog Box

—CRE/130D5K DAC (mask)

Configures the AIC23 codec and the TMS320C671 3 peripherals to
send a stream of data to the output jack on the CE713 DSP Starer Kit
board.

—Farameters

WWard length: | 16-bit

sampling rate (Hz):l 8 kHz

Scaling:l Maormalize

=k =

Orverlow mode:lWrap

OK I Cancel Help | Apply |

Word length
Sets the DAC to interpret the input data word length. Without this setting,
the DAC cannot convert the digital data to analog correctly. The default
value is 16 bits, with options of 20, 24, and 32 bits. Select the word length
to match the ADC setting.

Scaling
Selects whether the input to the codec represents unmodified data, or data
that has been normalized to the range +1.0. Matching the setting for the
C6713 DSK ADC block is appropriate here.

Overflow mode

Determines how the codec responds to data that is outside the range
specified by the Scaling parameter. You can choose Wrap or Saturate
options to apply to the result of an overflow in an operation. Saturationis
the less efficient operating mode if efficiency is important to your
development.

See Also C6713 DSK ADC

5-243

C6713 DSK DIP Switch

Purpose Simulate or read DIP switches
Library C6713 DSK Board Support in Embedded Target for TI C6000 DSP
Description Added to your model, this block behaves differently in simulation than in code
generation and targeting.
06713 DSK
DIF Swich | In Simulation — the options Switch 0, Switch 1, Switch 2, and Switch 3
P generate output to simulate the settings of the user-defined dual inline pin

(DIP) switches on your C6713 DSK. Each option turns the associated DIP
switch on when you select it. The switches are independent of one another.

By defining the switches to represent actions on your target, DIP switches let
you modify the operation of your process by reconfiguring the switch settings.

Use the Data type to specify whether the DIP switch options output an integer
or a logical string of bits to represent the status of the switches. The table that
follows presents all the option setting combinations with the result of your
Data type selection.

Option Settings to Simulate the User DIP Switches on the C6713 DSK

Switch O Switch 1 Switch 2 Switch 3 Boolean Integer Output
(LSB) (MSB) Output

Cleared Cleared Cleared Cleared 0000 0
Selected Cleared Cleared Cleared 0001 1
Cleared Selected Cleared Cleared 0010 2
Selected Selected Cleared Cleared 0011 3
Cleared Cleared Selected Cleared 0100 4
Selected Cleared Selected Cleared 0101 5
Cleared Selected Selected Cleared 0110 6
Selected Selected Selected Cleared 0111 7
Cleared Cleared Cleared Selected 1000 8
Selected Cleared Cleared Selected 1001 9

5-244

C6713 DSK DIP Switch

Option Settings to Simulate the User DIP Switches on the C6713 DSK (Continued)

Switch O Switch 1 Switch 2 Switch 3 Boolean Integer Output
(LSB) (MSB) Output

Cleared Selected Cleared Selected 1010 10

Selected Selected Cleared Selected 1011 11

Cleared Cleared Selected Selected 1100 12

Selected Cleared Selected Selected 1101 13

Cleared Selected Selected Selected 1110 14

Selected Selected Selected Selected 1111 15

Selecting the Integer data type results in the switch settings generating
integers in the range from 0 to 15 (uint8), corresponding to converting the
string of individual switch settings to a decimal value. In the Boolean data
type, the output string presents the separate switch setting for each switch,
with the Switch 0 status represented by the least significant bit (LLSB) and the
status of Switch 3 represented by the most significant bit (MSB).

In Code generation and targeting — the code generated by the block reads
the physical switch settings of the user switches on the board and reports them
as shown above. Your process uses the result in the same way whether in
simulation or in code generation. In code generation and when running your
application, the block code ignores the settings for Switch 0, Switch 1,
Switch 2 and Switch 3 in favor of reading the hardware switch settings. When
the block reads the DIP switches, it reports the results as either a Boolean
string or an integer value as the table below shows.

Output Values From The User DIP Switches on the €6713 DSK

Switch O Switch 1 Switch 2 Switch 3 Boolean Integer Output
(LSB) (MSB) Output

Off Off Off Off 0000 0

On Off Off Off 0001 1

Off On Off Off 0010 2

5-245

C6713 DSK DIP Switch

Output Values From The User DIP Switches on the €6713 DSK

Switch O Switch 1 Switch 2 Switch 3 Boolean Integer Output
(LSB) (MSB) Output

On On Off Off 0011 3
Off Off On Off 0100 4
On Off On Off 0101 5
Off On On Off 0110 6
On On On Off 0111 7
Off Off Off On 1000 8
On Off Off On 1001 9
Off On Off On 1010 10
On On Off On 1011 11
Off Off On On 1100 12
On Off On On 1101 13
Off On On On 1110 14
On On On On 1111 15

5-246

C6713 DSK DIP Switch
|

Dialog Box
Block Parameters: Switch x|
— L6713 DSK DIP Switch [mazk)]

Outputs ztate af uzer switches located on 6713 DSK board. In Boolean
mode, outputs a vector of 4 boolean values, with the least-significant bit

[LSE] first. In Integer mode, outputs &t integer from O to 7. For simulation,
checkbozes in the block dialog are used in place of the physical switches.

— Parameters
&
[~ Switch 1
[~ Switch 2
[~ Switch 3 [M5SE)

Data type: IBcu:Iean [~

Sample time:
f1.0

] I Cancel Help

Opening this dialog box causes a running simulation to pause. Refer to
“Changing Source Block Parameters” in your online Simulink documentation
for details.
Switch 0

Simulate the status of the user-defined DIP switch on the board.

Switch 1
Simulate the status of the user-defined DIP switch on the board.

Switch 2
Simulate the status of the user-defined DIP switch on the board.

Switch 3
Simulate the status of the user-defined DIP switch on the board.

Data type

Determines how the block reports the status of the user-defined DIP
switches. Boolean is the default, indicating that the output is a vector of
four logical values, either 0 or 1.

5-247

C6713 DSK DIP Switch

Each vector element represents the status of one DIP switch; the first
switch is switch Switeh 0 and the fourth is switch Switch 3. The data type
Integer converts the logical string to an equivalent unsigned 8-bit (uint8)
value. For example, when the logical string generated by the switches is
0101, the conversion yields 5 — the LSB is 1 and the MSB is 0.

Sample time

Specifies the time between samples of the signal. The default is 1 second
between samples, for a sample rate of one sample per second
(1/Sample time).

5-248

C6713 DSK LED

Purpose
Library

Description

Ca713 DSK
LED

LED

Dialog Box

|

Control LEDs
C6713 DSK Board Support in Embedded Target for TI C6000 DSP

Adding the C6713 DSK LED block to your Simulink block diagram lets you
trigger all four of the user light emitting diodes (LED) on the C6713 DSK. To
use the block, send a nonzero real scalar to the block. The C6713 DSK LED
block controls all four user LEDs located on the C6713 DSK.

When you add this block to a model, and send a real scalar to the block input,
the block sets the LED state based on the input value it receives:

® When the block receives an input value equal to 0, the specified LEDs are
turned off (disabled), 0000

® When the block receives a nonzero input value, the specified LEDs are
turned on (enabled), 0001 to 1111

To activate the block, send it an integer in the range 0 to 15. Vectors do not
work to activate LEDs; nor do complex numbers as scalars or vectors.

All LEDs maintain their state until they receive an input value that changes
the state. Enabled LEDs stay on until the block receives an input value that
turns the LEDs off; disabled LEDs stays off until turned on. Resetting the
C6713 DSK turns off all user LEDs. By default, the LEDs are turned off when
you start an application.

Block Parameters: LED = x|
CEF13D5EK LED [mazk]

Controls the Uzer LEDz on the CEF1305E, during execution of generated
code. The input must be an integer between 0 and 15, and the binary
equivalent of that walue will be reflected on the four uzer LED=.

Cancel Help Apply

This dialog box does not have any user-selectable options.

5-249

C6713 DSK RESET

Purpose
Library

Description

Resat
Ca713 DSK

Resat

Dialog Box

5-250

Reset to initial conditions
C6713 DSK Board Support in Embedded Target for TI C6000 DSP

Double-clicking this block in a Simulink model window resets the C6713 DSK
that is running the executable code built from the model. When you
double-click the Reset block, the block runs the software reset function
provided by CCS that resets the processor on your C6713 DSK. Applications
running on the board stop and the signal processor returns to the initial
conditions you defined.

Before you build and download your model, add the block to the model as a
stand-alone block. You do not need to connect the block to any block in the
model. When you double-click this block in the block library it resets your
C6713 DSK. In other words, anytime you double-click a C6713 DSK RESET
block you reset your C6713 DSK.

This block does not have settable options and does not provide a user interface
dialog box.

C6727PADK

Purpose
Library

Description

CETZTFADE

Configure model for C6727 Professional Audio Development Kit
Target Preferences in Embedded Target for TI C6000 DSP for TI DSP

Options on the block mask let you set features of code generation for your
C6727 Professional Audio Development Kit (PADK) target. Adding this block
to your Simulink model provides access to the processor hardware settings you
need to configure when you generate code from Real-Time Workshop to run on
the target.

Any model that you target to the C6727 PADK must include this block, or the
Custom C6000 target preferences block. Real-Time Workshop returns an error
message if a target preferences block is not present in your model.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to set the
target preferences for the model.

The processor and target options you specify on this block are:

¢ Target board information
® Memory mapping and layout

¢ Allocation of the various code sections, such as compiler, DSP/BIOS, and
custom sections

Setting the options included in this dialogbox results in identifying your target
to Real-Time Workshop, Embedded Target for TI C6000 DSP, and Simulink,
and configuring the memory map for your target. Both steps are essential for
targeting any board that is custom or explicitly supported, such as the C6711
DSK or the DM642 EVM.

Unlike most other blocks, you cannot open the block dialog box for this block
until you add the block to a model. When you try to open the block dialog, the
block attempts to connect to your target. It cannot make the connection when
the block is in the library and returns an error message.

5-251

C6727PADK

Generating Code from Model Subsystems

Real-Time Workshop provides the ability to generate code from a selected
subsystem in a model. To generate code for the C6727 PADK from a subsystem,
the subsystem model must include a C6727PADK target preferences block.

Dialog Box
) C6000 Target Preferences\C6727PAD - o] x|

Board Info | hemary | Sections |DSF'IEIIOS |7

Board Properties

Board type: |cB727PADK

Device: IE}'Q}' j

CPU clock speed: I 300 MHz

" Simulator [~ Enahle High-Speed RTDX

Board Custorn Code

[

Include paths
Libraries
Initialize functions
Terminate functions

| [

Link to Code Cormposer Studia
CCS hoard name:

IDMEMS Cycle Accurate Simulator j
CCS processar narne;
|TS320C6400 =l

0K | Apply Cancel | Help |

All target preferences block dialog boxes provide tabbed access to panes the
following panes with options you set for the target processor and target board:

¢ Board info — Select the target board and processor, set the clock speed, and
identify the target.

5-252

C6727PADK

® Memory — Set the memory allocation and layout on the target processor
(memory mapping).

® Sections — Determine the arrangement and location of the sections on the
target processor such as where to put the DSP/BIOS and compiler
information.

* DSP/BIOS — Specify how to configure tasking features of DSP/BIOS.

Board Info Pane

The following options appear on the Board Info pane for the C6000 Target
Preferences dialog box:

Board Type

Lets you enter the type of board you are targeting with the model. You can
enter Custom to support any board based on one of the supported processors, or
enter the name of one of the supported boards, such as C6711DSK. If you are
using one of the explicitly supported boards, choose the target preferences
block for that board and this field shows the proper board type.

Device

Lets you select the type of processor on the board you select in CCS board
name. The processor type you enter determines the contents and setting for
options on the Memory and Sections panes in this dialog box. If you are
targeting one of the supported boards, Device is disabled and the selected
device is fixed.

CPU Clock Speed (MHz)

Shows the clock speed of the processor on your target. When you enter a value,
you are not changing the CPU clock rate. Instead, you are reporting the actual
rate. If the value you enter does not match the rate on the target, your model’s
real-time results may be wrong, and code profiling results are not correct.

Enter the actual clock rate the board uses. The rate you enter in this field does
not change the rate on the board. Setting CPU clock speed to the actual board
rate allows the code you generate to run correctly according to the actual clock
rate of the hardware.

When you generate code for C6000 targets from Simulink models, you may
encounter the software timer. The timer is invoked automatically to handle
and create interrupts to drive your model if either of the following conditions
occur:

5-253

C6727PADK

5-254

¢ If your model does not include ADC or DAC blocks
® When the processing rates in your model change (the model is multirate)

Correctly generating interrupts for your model depends on the clock rate of the
CPU on your target. You can change the rate with the DIP switches on the
board or from one of the software utilities provided by Texas Instruments.

For the timer software to calculate the interrupts correctly, Embedded Target
for TI C6000 DSP needs to know the actual clock rate of your target processor
as you configured it. CPU clock speed lets you tell the timer the rate at which
your target CPU runs, which is the rate to use to match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock speed to calculate
the time for each interrupt. For example, if your model includes a sine wave
generator block running at 1 KHz feeding a signal into an FIR filter block, the
timer needs to create interrupts to generate the sine wave samples at the
proper rate. Using the clock rate you choose, 100 MHz for example, the timer
calculates the sine generator interrupt period as follows for the sine block:

¢ Sine block rate = 1 KHz, or 0.001 s/sample
® CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires
100,000,000/1000 = 1 Sine block interrupt per 1,000,000 clock ticks

So you must report the correct clock rate or the interrupts come at the wrong
times and the results are incorrect.

Simulator

Select this option when you are targeting a simulator rather than a hardware
target. You must select Simulator to target your code to a C6000 simulator.

Enable High-Speed RTDX
Select this option to tell the code generation process to enable high-speed
RTDX for this model.

Board Custom Code

Entries in this group let you specify the locations of custom source files or
libraries or other functions. Five options provide access to text areas where you
enter files and file paths.

C6727PADK

When you enter a path to a file, library, or other custom code, use the string
$(install_dir)

to refer to the CCS installation directory. The examples in the following figure
use the string.

Enter new paths or files (custom code items) one to a line. Include the full path
to the file for libraries and source code. Board custom code options do not
support functions that use return arguments or values. Only functions of type
void fname void are valid as entries in these parameters.

® Source files — Enter the full paths to source code files to use with this
target. The default is blank.

® Include paths — C6727 PADK requires some additional files to work
correctly. When you add this block to your model, the default include paths
appear as shown in the following figure. These entries include chip support
libraries, a BIOS addition, and an RTDX library. All are necessary for use.
You can add further paths by typing the path into the text area.

Board Customn Code

Source files 4 | |$(install_dinthoards\dskbdas_ ;I
§|r'|::|l_ldE naths] witcsl cB455NNC

Libraries $(lnstall_dinboards\dskB4s5
Initialize functions wlicsl_cB4xplus_intciinc
Terminate functions $(install_dintboards\dskBass_
wliinclude
$(install_dithios_5_21\packa

LI gesititrtdx\ibtcE000 LI

¢ | ibraries — These entries identify specific libraries that the target
requires. They appear on the list by default, as shown in the following figure.

5-255

C6727PADK

Board Customn Code

Source files d $(InStall_dir)\buards\dsk8455_:I
Include paths wlicsl_cBduplus_intchlibicsl o

Bdxplus_intc lib
$(install_dinthoards\dskB455_

wlcsl_cB4554 ke sl_cB455 ik
$(install_dinboardsidskB455_

wlilibvdskB455hs] lib

[=

Initialize functions
Terminate functions

® Initialize functions — C6727 PADK targets require a specific
initialization function, listed listed on the following figure as PADK6727_init.
Enter others if needed.

Board Custom Code

Source files a | |D3KB455 init -
Include paths _I - J
Libraries
Anitialize functions
Terminate functions

= []

® Terminate functions — Enter a function to run when a program
terminates. The default setting is not to include a specific termination
function.

CCS Board Name

Contains a list of all the boards defined in CCS Setup. From the list of available
boards, select the one to which you are targeting your code.

CCS Processor Name

Lists the processors on the board you selected for targeting in CCS board
name. In most cases, only one name appears because the board has one
processor. In the multiprocessor case, you select the processor by name from
the list.

5-256

C6727PADK

|

Memory Pane

When you target any board, you need to specify the layout of the physical
memory on your processor and board to determine how use it for your program.
For supported boards, the board-specific target preferences blocks set the
default memory map.

) C6000 Target Preferences\C6727PA - o] x|

Memory | Sections | DSP/EIOS |7
Physical memaory
ran Py LT R
SORARM
Addregs: I 0x10000000
Length: I 000040000
Contents: ICnde&Data .|

Board Info |

LI Adid | Refmove |

Heap

" Create heap Heap size: I
[Define [akel Heap lahel: I segment_name

L2 cache

I~ Enable 2 cache

L2 cache size: |32 kh 'l

0K Apply | Cancel | Help

The Memory pane contains memory options in three areas as shown in the
preceding figure:

® Physical Memory — Specifies the processor and board memory map

5-257

C6727PADK

5-258

® Heap — Specifies whether you use a heap and determines the size in words
® L2 Cache — Enables the L2 cache (where available) and sets the size in kB

Be aware that these options may affect the options on the Sections pane. You
can make selections here that change how you configure options on the
Sections pane.

Most of the information about memory segments and memory allocation is
available from the online help system for Code Composer Studio.

Physical Memory Options

This list shows the physical memory segments available on the board and
processor. By default, target preferences blocks show the memory segments
found on the selected processor. In addition, the Memory pane on
preconfigured target preferences blocks shows the memory segments available
on the board, but off of the processor. Target preferences blocks set default
starting addresses, lengths, and contents of the default memory segments.

The default memory segments for each processor and board are different. For
example:

® Custom boards based on C670x processors provide IPRAM and IDRAM
memory segments by default.

¢ C6711DSK boards provide SDRAM memory segments by default.

Name

When you highlight an entry on the Physical memory list, the name of the
entry appears in this field. To change the name of the existing memory
segment, select it in the Physical memory list and then type the new name
here.

Note You cannot change the names of default processor memory segments.

To add a new physical memory segment to the list, click Add, replace the
temporary label in Name with the one to use, and press Return. Your new
segment appears on the list.

C6727PADK

After you add the segment, you can configure the starting address, length, and
contents for the new segment. New segments start with code and data as the
type of content that can be stored in the segment (refer to the Contents option).

Note Names are case sensitive. NewSegment is not the same as newsegment or
newSegment.

Address

Address reports the starting address for the memory segment showing in
Name. Address entries are in hexadecimal format and limited only by the
board or processor memory.

When you are using a processor-specific preferences block, the starting address
shown is the default value. You can change the starting value by entering the
new value directly in Address when you select the memory segment to change.

Length
From the starting address, Length sets the length of the memory allocated to
the segment in Name. As in all memory entries, specify the length in

hexadecimal format, in minimum addressable data units (MADUs). For the
C6000 processor family, the MADU is 8 bytes (one word).

When you are using a processor-specific preferences block, the length shown is
the default value. You can change the value by entering the new value directly
in this option.

Contents

Contents details the kind of program sections that you can store in the memory
segment in Name. As the processor type for the target preferences block
changes, the kinds of information you store in listed memory segments may
change. Generally, the Contents list contains these strings:

® Code — Allow code to be stored in the memory segment in Name.

® Data — Allow data to be stored in the memory segment in Name.

® Code and Data — Allow code and data to be stored in the memory segment
in Name. When you add a new memory segment, this is the default setting
for the contents of the new element.

5-259

C6727PADK

5-260

You may add or use as many segments of each type as you need, within the
limits of the memory on your processor.

Add

Click Add to add a new memory segment to the target memory map. When you
click Add, a new segment name appears, for example NEWMEM1, in Name and on
the Physical memory list. In Name, change the temporary name NEWMEM1 by
entering the new segment name. Enter the new name or click Apply to update
the temporary name on the list to the name you want.

Remove

This option lets you remove a memory segment from the memory map. Select
the segment to remove on the Physical memory list, and click Remove to
delete the segment.

Create Heap

If your processor supports using a heap, as do the C6711, for example, selecting
this option allows you to create the heap, and enables the Heap size option.
Create heap is not available on processors that either do not provide a heap or
do not allow you to configure the heap.

Using this option, you can create a heap in any memory segment on the
Physical memory list. Select the memory segment on the list, and then select
Create heap to create a heap in the select segment. After you create the heap,
use the Heap size and Define label options to configure the heap.

Note The location of the heap in the memory segment is not under your
control. The only way to control the location of the heap in a segment is to
make the segment and the heap the same size. Otherwise, the compiler
determines the location of the heap in the segment.

Heap Size

After you select Create heap, this option lets you specify the size of the heap
in words. Enter the number of words in decimal format. When you enter the
heap size in decimal words, the system converts the decimal value to
hexadecimal format. You can enter the value directly in hexadecimal format as
well. Processors may support different maximum heap sizes.

C6727PADK

Define Label

Selecting Create heap allows you to name the heap. Enter your label for the
heap in the Heap label option.

Heap Label

You enable this by selecting Define label. Use this option to provide the label
for the heap. Any combination of characters is accepted for the label, except
reserved characters in C/C++ compilers.

Enable L2 Cache

C621x, C671x, and C641x processors support an L2 cache memory structure
that you can configure as SRAM and partial cache. Both the data memory and
the program share this second-level memory.

If your processor supports the two-level memory scheme, this option enables
the L2 cache on the processor.

L2 Cache size

When you enable the L2 cache, use this list to determine the size of the cache
allotted. Select the size of the cache from the list.

Sections Pane

Options on this pane let you specify where various program sections should go
in memory. Program sections are distinct from memory segments — sections
are portions of the executable code stored in contiguous memory locations.
Commonly used sections include .text, .bss, .data, and .stack. Some sections
relate to the compiler, some to DSP/BIOS, and some can be custom sections as
you require.

For more information about program sections and objects, refer to the CCS
online help.

5-261

C6727PADK

} C6000 Target Preferences\C6727) = |EI|£|

| DSP/BIOS |7

4 | Description: ¢ code

Board Info | femary

Cormpiler sections

gwitch
hss

far Flacement: IlRAM .l
_cinit
pinit LI

DEF/EBIOS sections/objects

Description: Argument buffer
.gblinit
trodata

.sg_sdata Placement: IIRAM 'l
.obj

-hios LI

Data ohject placement: IIRAM 'l
Code ohject placement: IIRAM 'l
Customn sections

a | Mame: I
Placement: I|RAM -l

LI Add | Remove |

Ok | Apply | Cancel | Help |

Within the pane shown in this figure, you configure the allocation of sections
for Compiler, DSP/BIOS, and Custom needs.

This table provides brief definitions of the kinds of sections in the Compiler
sections, DSP/BIOS sections/objects, and Custom sections lists in the pane.

5-262

C6727PADK

All sections do not appear on all lists. The list the string appears on is shown

in the table.

String Section List Description of the Section Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the code

.bios DSP/BIOS DSP/BIOS code if you are using DSP/BIOS
options in your program

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global, defined
as far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS startup
initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the target
program can read

.pinit Compiler Load allocation of the table of global object
constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Compiler The global stack

5-263

C6727PADK

5-264

String Section List Description of the Section Contents

.switch Compiler Jump tables for switch statements in the
executable code

.sysdata DSP/BIOS Data about DSP/BIOS
.sysinit DSP/BIOS DSP/BIOS initialization startup code
.sysmem Compiler Dynamically allocated object in the code

containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants

.trcdata DSP/BIOS TRC mask variable and its initial value

section load allocation

You can learn more about memory sections and objects in your Code Composer
Studio online help.

Compiler Sections

During program compilation, the C6000 compiler produces both uninitialized
and initialized blocks of data and code. These blocks get allocated into memory
as required by the configuration of your system. On the Compiler sections list,
you find both initialized sections (sections that contain data or executable code)
and uninitialized sections (sections that reserve space in memory). The
initialized sections are:

® .cinit

e .const

® .switch

e _text (created by the assembler)

These sections are uninitialized:

.bss (created by the assembler)
.far

.stack

.sysmem

C6727PADK

Other sections appear on the list as well:
¢ .data (created by the assembler)

® .cio

® .pinit

Note The C/C++ compiler does not use the .data section.

When you highlight a section on the list, Description shows a brief description
of the section. Also, Placement shows you where the section is presently
allocated in memory.

Description

Provides a brief explanation of the contents of the selected entry on the
Compiler sections list.

Placement

Shows you where the selected Compiler sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments as defined in
the physical memory map on the Memory pane. Select one of the listed memory
segments to allocate the highlighted compiler section to the segment.

DSP/BIOS Sections

During program compilation, DSP/BIOS produces both uninitialized and
initialized blocks of data and code. These blocks get allocated into memory as
required by the configuration of your system. On the DSP/BIOS sections list,
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections.

Description

Provides a brief explanation of the contents of the selected DSP/BIOS sections
list entry.

Placement

Shows where the selected DSP/BIOS sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments available on
C6000 processors, and changes based on the processor you are using.

5-265

C6727PADK

5-266

DSP/BIOS Object Placement

These objects are distinct from the entries on the DSP/BIOS sections list.
DSP/BIOS objects, such as STS or LOG, are placed in the memory segment you
select from the DSP/BIOS Object Placement list. All DSP/BIOS objects use
the same memory segment. You cannot select the location for individual
objects.

Custom Sections

When your program uses code or data sections that are not included in either
the Compiler sections or DSP/BIOS sections lists, you add the new sections
to this list. Initially, the Custom sections list contains no fixed entries, but
instead a placeholder for a section for you to define.

Name

You enter the name for your new section in this field. To add a new section,
click Add. Then replace the temporary name with the name you want to use.
Although the temporary name includes a period at the beginning you do not
need to include the period in your new name. Names are case sensitive.
NewSection is not the same as newsection, or newSection.

Placement

With your new section added to the Name list, select the memory segment to
which to add your new section. Within the restrictions imposed by the
hardware and compiler, you can select any segment that appears on the list.

Add

Clicking Add lets you configure a new entry to the list of custom sections. When
you click Add, the block provides a new temporary name in Name. Enter a new
section name to add the section to the Custom sections list. After typing the
new name, click Apply to add the new section to the list. You can also click OK
to add the section to the list and close the dialog box.

Remove

To remove a section from the Custom sections list, select the section and click
Remove.

DSP/BIOS Pane

Options on this pane let you specify how to configure tasking features of
DSP/BIOS.

C6727PADK

The asynchronous task scheduler uses these options when you select the
Incorporate DSP/BIOS option in the model configuration set. By default,
Incorporate DSP/BIOS is selected and the Embedded Target for TI C6000
DSP creates separate DSP/BIOS tasks for each sample time in your Simulink
model.

DSP/BIOS tasking blocks provide parameters on their block dialog boxes so you
can specify the DSP/BIOS stack size and stack segment (where the stack is in
memory) for asynchronous tasks created by the DSP/BIOS Task and
DSP/BIOS Triggered Task blocks.

The code generation process uses the options on this pane to configure TSK
entries in the TSK Task Manager in CCS when it creates DSP/BIOS tasks.

When you clear the Incorporate DSP/BIOS option, you disable the options in
this pane. Your project does not include DSP/BIOS tasks, and Embedded
Target for TI C6000 DSP uses an interrupt-based scheduler.

For more information about tasks, refer to the Code Composer Studio online
help.

5-267

C6727PADK

5-268

) C6000 Target Preferences\C672 _ o]]

|7.

Board Info femary | Sections |

TSK Task Manager Properties

Default stack size (hytes): 095

Stack segment far static tasks: I'RAM j'
Stack segment for dynamic tasks: ISDRAM jv

{must have a heap allocated)

Ok Apply Cancel Help

In the pane shown in this figure, you configure the options for DSP/BIOS tasks,
such as the task manager and scheduler configuration. The Sections pane
includes DSP/BIOS configuration options as well. The options specify the stack
use and locations on the stack for static and dynamic tasks.

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU context
during thread preemption for task threads. This option sets the size of the
DSP/BIOS stack in bytes allocated for each task. A value 4096 bytes is the
default. You can set any size up to the limits for the processor. Set the stack

C6727PADK
|

size so that tasks do not use more memory than you allocate. While any
task can use more memory than the stack includes, failure to set the stack
size might cause the task to write into other memory or data areas, possibly
causing unpredictable behavior.

Stack segment for static tasks
Use this option to specify where to allocate the stack for static tasks. Static
tasks are created whether or not they are needed for operation, compared
to dynamic tasks that the system creates as needed. Tasks that your
program uses often might be good candidates for static tasks. However,
infrequently used tasks usually work best as dynamic tasks.

The list offers options SDRAM and ISRAM for locating the stack in memory,
with SDRAM as the default section. The Memory pane provide more options
for the physical memory on the processor.

Stack segment for dynamic tasks

Like static tasks, dynamic tasks use a stack as well. Setting this option
specifies where to locate the stack for dynamic tasks. In this case, SDRAM is
the only valid stack location in memory.

See Also Custom C6000

5-269

CPU Timer

Purpose
Library

Description

CEU Timer

CEQOD Timer

Dialog Box

5-270

Select timer and configure periodic interrupt
C6000 DSP Core Support Library in Embedded Target for TI C6000 DSP

Use this block in a model to select the CPU timer on your board and specify
a periodic interrupt. While the list provides two timers, 0 and 1, some boards
offer either fewer or more timers. For example, the DM642 provides three
timers.

CPU timer does not have input or output ports. Adding the block to your model
serves to configure periodic interrupts in the generated code.

L] Block Parameters: CPU Timer X|
—CB000 Timer (mask)
—Farameters

T e . (AR -

Timet petiod:

[o

oK I Cancel Help Al
Timer no.

Select the timer to use from the list. Be sure your target offers a timer with
the timer number you choose. Timer 0 is selected by default.

Timer period

Set the timer interrupt period in terms of CPU clock cycles. Use this block
to configure the selected CPU timer to generate a periodic interrupt.

Enter the timer period in clock cycles, either as an integer, fraction,
decimal, or a variable in your workspace. 0 is the default value.

For example, to generate a periodic timer interrupt every second when the
CPU clock operates at 720MHz, set Timer period to 720e6 clock cycles.

CPU Timer
|

See Also Hardware Interrupt, Idle Task

5-271

Custom C6000

Purpose
Library

Description

Custorm C8000

5-272

Configure model for C6000-processor-based custom hardware targets
Target Preferences in Embedded Target for TI C6000 DSP for TI DSP

Options on the block mask let you set features of code generation for your
custom C6000 processor-based target. Adding this block to your Simulink
model provides access to the processor hardware settings you need to configure
when you generate code from Real-Time Workshop to run on the target.

Any model that you target to custom hardware must include this block or the
target preferences block that best matches your processor, such as the
C6416DSK target preferences block to target custom hardware based on the
C6416 processor. Real-Time Workshop returns an error message if a target
preferences block is not present in your model.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to set the
target preferences for the model. Simulink returns an error when your model
does not include a target preferences block or has more than one.

The processor and target options you specify on this block are:

® Target board information
® Memory mapping and layout

¢ Allocation of the various code sections, such as compiler, DSP/BIOS, and
custom sections

Setting the options included in this dialogbox results in identifying your target
to Real-Time Workshop, Embedded Target for TI C6000 DSP, and Simulink,
and configuring the memory map for your target. Both steps are essential for
targeting any board that is custom or explicitly supported, such as the C6711
DSK or the DM642 EVM.

Unlike most other blocks, you cannot open the block dialog box for this block
until you add the block to a model. When you try to open the block dialog, the
block attempts to connect to your target. It cannot make the connection when
the block is in the library and returns an error message.

Custom C6000

Dialog Box

Generating Code from Model Subsystems

Real-Time Workshop provides the ability to generate code from a selected
subsystem in a model. To generate code for a custom C6000-based target from

a subsystem, the subsystem model must include a Custom C6000 target
preferences block.

_J C6000 Target Preferences)\Custom it |EI |£|

Einardlnfnl Memory | Sections | DSP/EIOS |7

Board Properties

Board type:

|Custam
Device: Iggm j
CPU clock speed: I 200 MHz
[~ Simulator [Enahle High-Speed RTDX

Board Custom Code

F Y F
Include paths _I
Libraries

Initialize functions

Terminate functions

[| |

Link to Code Composer Studio
CCS board name:

IDMEMS Cycle Accurate Simulator j
CCS processor name:

[TMs320CE400 [

OK | Apply Cancel | Help |

5-273

Custom C6000

5-274

All target preferences block dialog boxes provide tabbed access to panes the
following panes with options you set for the target processor and target board:

® Board info — Select the target board and processor, set the clock speed, and
identify the target.

® Memory — Set the memory allocation and layout on the target processor
(memory mapping).

¢ Sections — Determine the arrangement and location of the sections on the
target processor such as where to put the DSP/BIOS and compiler
information.

* DSP/BIOS — Specify how to configure tasking features of DSP/BIOS.

Board Info Pane

The following options appear on the Board Info pane for the C6000 Target
Preferences dialog box.

Board Type

Lets you enter the type of board you are targeting with the model. You can
enter Custom to support any board based on one of the supported processors, or
enter the name of one of the supported boards, such as C6711DSK. If you are
using one of the explicitly supported boards, choose the target preferences
block for that board and this field shows the proper board type.

Device

Lets you select the type of processor on the board you select in CCS board
name. The processor type you enter determines the contents and setting for
options on the Memory and Sections panes in this dialog box. If you are
targeting one of the supported boards, Device is disabled and the selected
device is fixed.

CPU Clock Speed (MHz)

Shows the clock speed of the processor on your target. When you enter a value,
you are not changing the CPU clock rate. Instead, you are reporting the actual
rate. If the value you enter does not match the rate on the target, your model’s
real-time results may be wrong, and code profiling results are not correct.

Enter the actual clock rate the board uses. The rate you enter in this field does
not change the rate on the board. Setting CPU clock speed to the actual board
rate allows the code you generate to run correctly according to the actual clock
rate of the hardware.

Custom C6000

When you generate code for C6000 targets from Simulink models, you may
encounter the software timer. The timer is invoked automatically to handle
and create interrupts to drive your model if either of the following conditions
occur:

¢ If your model does not include ADC or DAC blocks
® When the processing rates in your model change (the model is multirate)

Correctly generating interrupts for your model depends on the clock rate of the
CPU on your target. You can change the rate with the DIP switches on the
board or from one of the software utilities provided by Texas Instruments.

For the timer software to calculate the interrupts correctly, Embedded Target
for TI C6000 DSP needs to know the actual clock rate of your target processor
as you configured it. CPU clock speed lets you tell the timer the rate at which
your target CPU runs, which is the rate to use to match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock speed to calculate
the time for each interrupt. For example, if your model includes a sine wave
generator block running at 1 KHz feeding a signal into an FIR filter block, the
timer needs to create interrupts to generate the sine wave samples at the
proper rate. Using the clock rate you choose, 100 MHz for example, the timer
calculates the sine generator interrupt period as follows for the sine block:

¢ Sine block rate = 1 KHz, or 0.001 s/sample
¢ CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires
100,000,000/1000 = 1 Sine block interrupt per 1,000,000 clock ticks

So you must report the correct clock rate or the interrupts come at the wrong
times and the results are incorrect.
Simulator

Select this option when you are targeting a simulator rather than a hardware
target. You must select Simulator to target your code to a C6000 simulator.

Enable High-Speed RTDX

Select this option to tell the code generation process to enable high-speed
RTDX for this model.

5-275

Custom C6000

5-276

Board Custom Code

Entries in this group let you specify the locations of custom source files or
libraries or other functions. Five options provide access to text areas where you
enter files and file paths.

enter files and file paths.

When you enter a path to a file, library, or other custom code, use the string
$(install_dir)

to refer to the CCS installation directory.

Enter new paths or files (custom code items) one to a line. Include the full path
to the file for libraries and source code. Board custom code options do not
support functions that use return arguments or values. Only functions of type
void fname void are valid as entries in these parameters.

® Source files — you enter the full paths to source code files to use with this
target. By default there are no entries in this parameter.

® Include paths — If you require additional files on your path, you add them
by typing the path into the text area. The default setting does not include
additional paths.

® Libraries — these entries identify specific libraries that the target requires.
They appear on the list by default if required. Add more as you require by
entering the full path to the library with the library file in the text area. No
additional libraries appear here in the default configuration.

® Initialize functions — If your project requires an initialize function,
enter it here. By default, this is empty.

® Terminate functions — enter a function to run when a program terminates.
The default setting is not to include a specific termination function.

CCS Board Name

Contains a list of all the boards defined in CCS Setup. From the list of available
boards, select the one that you are targeting your code for.

CCS Processor Name

Lists the processors on the board you selected for targeting in CCS board
name. In most cases, only one name appears because the board has one

Custom C6000

|

processor. In the multiprocessor case, you select the processor by name from
the list.

Memory Pane

When you target any board, you need to specify the layout of the physical
memory on your processor and board to determine how use it for your program.
For supported boards, the board-specific target preferences blocks set the
default memory map.

} C6000 Target Preferences _ o x|

Sattiane | DSP/BIOS li
Physical memoary
.| Neme fPRam

Board Info

IDRAM
Address: Im
Length: Im
Contents: m
LI Addd | Remave |
Heap

[~ Create heap Heap size: I 1000
[~ Define [abel Heap label: I segment_name

L2 cache

I~ Enghle L2 cache

L2 cache size: I32 kh 'l

0K Apply | Cancel | Help

5-277

Custom C6000

5-278

The Memory pane contains memory options in three areas:

¢ Physical Memory — specifies the processor and board memory map
¢ Heap — specifies whether you use a heap and determines the size in words
¢ L2 Cache — enables the L2 cache (where available) and sets the size in kB

Be aware that these options may affect the options on the Sections pane. You
can make selections here that change how you configure options on the
Sections pane.

Most of the information about memory segments and memory allocation is
available from the online help system for Code Composer Studio.

Physical Memory Options

This list shows the physical memory segments available on the board and
processor. By default, target preferences blocks show the memory segments
found on the selected processor. In addition, the Memory pane on
preconfigured target preferences blocks shows the memory segments available
on the board, but off of the processor. Target preferences blocks set default
starting addresses, lengths, and contents of the default memory segments.

The default memory segments for each processor and board are different. For
example:

® Custom boards based on C670x processors provide IPRAM and IDRAM
memory segments by default.

¢ C6711DSK boards provide SDRAM memory segments by default.

Name

When you highlight an entry on the Physical memory list, the name of the
entry appears here. To change the name of the existing memory segment, select
it in the Physical memory list and then type the new name here.

Note You cannot change the names of default processor memory segments.

To add a new physical memory segment to the list, click Add, replace the
temporary label in Name with the one to use, and press Return. Your new
segment appears on the list.

Custom C6000

After you add the segment, you can configure the starting address, length, and
contents for the new segment. New segments start with code and data as the

type of content that can be stored in the segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as newsegment or
newSegment.

Address

Address reports the starting address for the memory segment showing in
Name. Address entries are in hexadecimal format and limited only by the
board or processor memory.

When you are using a processor-specific preferences block, the starting address
shown is the default value. You can change the starting value by entering the

new value directly in Address when you select the memory segment to change.

Length
From the starting address, Length sets the length of the memory allocated to
the segment in Name. As in all memory entries, specify the length in

hexadecimal format, in minimum addressable data units (MADUSs). For the
C6000 processor family, the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the length shown is
the default value. You can change the value by entering the new value directly
in this option.

Contents

Contents details the kind of program sections that you can store in the memory
segment in Name. As the processor type for the target preferences block
changes, the kinds of information you store in listed memory segments may
change. Generally, the Contents list contains these strings:

® Code — allow code to be stored in the memory segment in Name.

® Data — allow data to be stored in the memory segment in Name.

® Code and Data — allow code and data to be stored in the memory segment
in Name. When you add a new memory segment, this is the default setting
for the contents of the new element.

You may add or use as many segments of each type as you need, within the
limits of the memory on your processor.

5-279

Custom C6000

5-280

Add

Click Add to add a new memory segment to the target memory map. When you
click Add, a new segment name appears, for example NEWMEM1, in Name and on
the Physical memory list. In Name, change the temporary name NEWMEM1 by
entering the new segment name. Entering the new name, or clicking Apply
updates the temporary name on the list to the name you enter.

Remove

This option lets you remove a memory segment from the memory map. Select
the segment to remove on the Physical memory list and click Remove to
delete the segment.

Create Heap

If your processor supports using a heap, as does the C6711, for example,
selecting this option enables creating the heap, and enables the Heap size
option. Create heap is not available on processors that either do not provide
a heap or do not allow you to configure the heap.

Using this option you can create a heap in any memory segment on the
Physical memory list. Select the memory segment on the list and then select
Create heap to create a heap in the select segment. After you create the heap,
use the Heap size and Define label options to configure the heap.

The location of the heap in the memory segment is not under your control. The
only way to control the location of the heap in a segment is to make the segment
and the heap the same size. Otherwise, the compiler determines the location of
the heap in the segment.

Heap Size

After you select Create heap, this option lets you specify the size of the heap
in words. Enter the number of words in decimal format. When you enter the
heap size in decimal words, the system converts the decimal value to
hexadecimal format. You can enter the value directly in hexadecimal format as
well. Processors may support different maximum heap sizes.

Define Label

Selecting Create heap enables this option that allows you to name the heap.
Enter your label for the heap in the Heap label option.

Custom C6000

Heap Label

Enabled by selecting Define label, you use this option to provide the label for
the heap. Any combination of characters is accepted for the label, except
reserved characters in C/C++ compilers.

Enable L2 Cache

C621x, C671x, and C641x processors support an L2 cache memory structure
that you can configure as SRAM and partial cache. Both the data memory and
the program share this second-level memory. C620x DSPs do not support L2
cache memory and this option is not available when you choose one of the
C620x processors as your target.

If your processor supports the two-level memory scheme, this option enables
the L2 cache on the processor.

L2 Cache size

When you enable the L2 cache, use this list to determine the size of the cache
allotted. Select the size of the cache from the list.

Sections Pane

Options on this pane let you specify where various program sections should go
in memory. Program sections are distinct from memory segments — sections
are portions of the executable code stored in contiguous memory locations.
Commonly used sections include .text, .bss, .data, and .stack. Some sections
relate to the compiler, some to DSP/BIOS, and some can be custom sections as
you require.

For more information about program sections and objects, refer to the CCS
online help.

5-281

Custom C6000

} C6000 Target Preferences o [l PS

DSP/BIOS |7

Desctiption: ¢ code

Board Info herrnary

Compiler sections

.gwitch
hss
far
.cinit
.pinit LI
DER/BIOS sections/objects

Description: Argument buffer

Placement: [|pram j

_ghlinit
trodata

-sysdata Flacement: 2
o [IDRANM -]
-bios LI
Data ohject placement: IIDRAM j
Code ohject placement: IIPRAM j
Custom sections

a | Mame: I.SEC']

Placement: I|DRAM j
LI Add | Remove |
OK | Apply | Cancel | Help |

Within this pane, you configure the allocation of sections for Compiler,
DSP/BIOS, and Custom needs.

This table provides brief definitions of the kinds of sections in the Compiler
sections, DSP/BIOS sections/objects, and Custom sections lists in the pane.

5-282

Custom C6000

All sections do not appear on all lists. The list the string appears on is shown

in the table.

String Section List Description of the Section Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the code

.bios DSP/BIOS DSP/BIOS code if you are using DSP/BIOS
options in your program

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global, defined
as far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS startup
initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the target
program can read

.pinit Compiler Load allocation of the table of global object
constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Compiler The global stack

5-283

Custom C6000

5-284

String Section List Description of the Section Contents

.switch Compiler Jump tables for switch statements in the
executable code

.sysdata DSP/BIOS Data about DSP/BIOS
.sysinit DSP/BIOS DSP/BIOS initialization startup code
.sysmem Compiler Dynamically allocated object in the code

containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants

.trcdata DSP/BIOS TRC mask variable and its initial value

section load allocation

You can learn more about memory sections and objects in your Code Composer
Studio online help.

Compiler Sections

During program compilation, the C6000 compiler produces both uninitialized
and initialized blocks of data and code. These blocks get allocated into memory
as required by the configuration of your system. On the Compiler sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections. The initialized
sections are:

® .cinit

e .const

® .switch

® . text (created by the assembler)

These sections are uninitialized:

.bss (created by the assembler)
.far

.stack

.sysmem

Custom C6000

Other sections appear on the list as well:
® .data (created by the assembler)

® .cio

® .pinit

Note The C/C++ compiler does not use the .data section.

When you highlight a section on the list, Description shows a brief description
of the section. Also, Placement shows you where the section is presently
allocated in memory.

Description

Provides a brief explanation of the contents of the selected entry on the
Compiler sections list.

Placement

Shows you where the selected Compiler sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments as defined in
the physical memory map on the Memory pane. Select one of the listed memory
segments to allocate the highlighted compiler section to the segment.

DSP/BIOS Sections

During program compilation, DSP/BIOS produces both uninitialized and
initialized blocks of data and code. These blocks get allocated into memory as
required by the configuration of your system. On the DSP/BIOS sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections.

Description

Provides a brief explanation of the contents of the selected DSP/BIOS sections
list entry.

Placement

Shows where the selected DSP/BIOS sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments available on
C6000 processors, and changes based on the processor you are using.

5-285

Custom C6000

5-286

DSP/BIOS Object Placement

Distinct from the entries on the DSP/BIOS sections list, DSP/BIOS objects like
STS or LOG, if your project uses them, get placed in the memory segment you
select from the DSP/BIOS Object Placement list. All DSP/BIOS objects use
the same memory segment. You cannot select the location for individual
objects.

Custom Sections

When your program uses code or data sections that are not included in either
the Compiler sections or DSP/BIOS sections lists, you add the new sections
to this list. Initially, the Custom sections list contains no fixed entries, just a
placeholder for a section for you to define.

Name

You enter the name for your new section here. To add a new section, click Add.
Then replace the temporary name with the name to use. Although the
temporary name includes a period at the beginning you do not need to include
the period in your new name. Names are case sensitive. NewSection is not the
same as newsection, or newSection.

Placement

With your new section added to the Name list, select the memory segment to
which to add your new section. Within the restrictions imposed by the
hardware and compiler, you can select any segment that appears on the list.

Add

Clicking Add lets you configure a new entry to the list of custom sections. When
you click Add, the block provides a new temporary name in Name. Enter the
new section name to add the section to the Custom sections list. After typing

the new name, click Apply to add the new section to the list. You can also click
OK to add the section to the list and close the dialog box.

Remove

To remove a section from the Custom sections list, select the section and click
Remove.

DSP/BIOS Pane

Options on this pane let you specify how to configure tasking features of
DSP/BIOS.

Custom C6000

The asynchronous task scheduler uses these options when you select the
Incorporate DSP/BIOS option in the model configuration set. By default,
Incorporate DSP/BIOS is selected and the Embedded Target for TI C6000
DSP creates separate DSP/BIOS tasks for each sample time in your Simulink
model.

DSP/BIOS tasking blocks provide parameters on their block dialog boxes so you
can specify the DSP/BIOS stack size and stack segment (where the stack is in
memory) for asynchronous tasks created by the DSP/BIOS Task and
DSP/BIOS Triggered Task blocks.

The code generation process uses the options on this pane to configure TSK
entries in the TSK Task Manager in CCS when it creates DSP/BIOS tasks.

When you clear the Incorporate DSP/BIOS option, you disable the options in
this pane. Your project does not include DSP/BIOS tasks, and Embedded
Target for TI C6000 DSP uses an interrupt-based scheduler.

For more information about tasks, refer to the Code Composer Studio online
help.

5-287

Custom C6000

5-288

} C6000 Target Preferences o [l PS
Board Info | - Memory | Siiione |DSF'IEIIOS|7

TSK Task Manager Properties

Default stack size (bytes): IIJDBE
Stack segment for static tasks: I'DRAM j
Stack segment for dynamic tasks: IMEM—NULL j

{must have a heap allocated)

OK Apply Cancel Help

Within this pane, you configure the options for DSP/BIOS tasks, such as the
task manager and scheduler configuration. Note that the Sections pane
includes DSP/BIOS configuration options as well. The options specify the stack
use and locations on the stack for static and dynamic tasks.

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU context
during thread preemption for task threads. This option sets the size of the

Custom C6000

DSP/BIOS stack in bytes allocated for each task. 4096 bytes is the default
value. You can set any size up to the limits for the processor. Set the stack
size so that tasks do not use more memory than you allocate. While any
task can use more memory than the stack includes, this might cause the
task to write into other memory or data areas, possibly causing
unpredictable behavior.

Stack segment for static tasks

Use this option to specify where to allocate the stack for static tasks. Static
tasks are created whether or not they are needed for operation, compared
to dynamic tasks that the system creates as needed. Tasks that your
program uses often might be good candidates for static tasks. Infrequently
used tasks usually work best as dynamic tasks.

The list offers IDRAM for locating the stack in memory. The Memory pane
provide more options for the physical memory on the processor.

Stack segment for dynamic tasks

Like static tasks, dynamic tasks use a stack as well. Setting this option
specifies where to locate the stack for dynamic tasks. In this case, MEM_NULL
is the only valid stack location in memory.

5-289

DM642EVM

Purpose
Library

Description

DME4ZEVM

5-290

Configure model for DM642 Evaluation Module
Target Preferences in Embedded Target for TI C6000 DSP

Options on the block mask let you set features of code generation for your
DM642 Evaluation Module target. Adding this block to your Simulink model
provides access to the processor hardware settings to configure when you
generate code from Real-Time Workshop to run on the target.

Any model that you target to the DM642 evaluation module must include this
block, or the Custom C6000 target preferences block. Real-Time Workshop
returns an error message if a target preferences block is not present in your
model.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to set the
target preferences for the model.

The processor and target options you specify on this block are:

¢ Target board information
® Memory mapping and layout

¢ Allocation of the various code sections, such as compiler, DSP/BIOS, and
custom sections

Setting the options included in this dialogbox results in identifying your target
to Real-Time Workshop, Embedded Target for TI C6000 DSP, and Simulink,
and configuring the memory map for your target. Both steps are essential for
targeting any board that is custom or explicitly supported, such as the C6711
DSK or the DM642 EVM.

Unlike most other blocks, you cannot open the block dialog box for this block
until you add the block to a model. When you try to open the block dialog, the
block attempts to connect to your target. It cannot make the connection when
the block is in the library and returns an error message.

DM642EVM

dialog box Box

|

Generating Code from Model Subsystems

Real-Time Workshop provides the ability to generate code from a selected
subsystem in a model. To generate code for the DM642 EVM from a subsystem,
the subsystem model must include a DM642EVM target preferences block.

) C6000 Target Preferences\DM642 - ol x|

Board Info | Memary | Sections |DSF'IEIIOS |7

Board Properties

Board type: [prBa2E I

Device: IDMEd? j

CPU clock speed: m hiHz

[Simulator [~ Enable High-Speed RTDX

Board Custorn Code

[

Initialize functions
Terminate functions

[E

Link to Code Composer Studio
CCS hoard name:

IDMBJMS Cycle Accurate Simulator j
CCS processar narme;
[ThvS320C6400 =l

0K | Apply Cancel | Help |

All target preferences block dialog boxes provide tabbed access to panes the
following panes with options you set for the target processor and target board:

¢ Board info — Select the target board and processor, set the clock speed, and
identify the target.

5-291

DM642EVM

5-292

® Memory — Set the memory allocation and layout on the target processor
(memory mapping).

® Sections — Determine the arrangement and location of the sections on the
target processor such as where to put the DSP/BIOS and compiler
information.

* DSP/BIOS — Specify how to configure tasking features of DSP/BIOS.

Board Info Pane

The following options appear on the Board Info pane for the C6000 Target
Preferences dialog box.

Board Type

Lets you enter the type of board you are targeting with the model. You can
enter Custom to support any board based on one of the supported processors, or
enter the name of one of the supported boards, such as C6711DSK. By default,
the DM642EVM block specifies the DM642EVM for the board type.

Device

Lets you select the type of processor on the board you select in CCS board
name. The processor type you enter determines the contents and setting for
options on the Memory and Sections panes in this dialog box. If you are
targeting one of the supported boards, Device is disabled and the selected
device is fixed.

CPU Clock Speed (MHz)

Shows the clock speed of the processor on your target. When you enter a value,
you are not changing the CPU clock rate. Instead, you are reporting the actual
rate. If the value you enter does not match the rate on the target, your model’s
real-time results may be wrong, and code profiling results are not correct.

Enter the actual clock rate the board uses. The rate you enter in this field does
not change the rate on the board. Setting CPU clock speed to the actual board
rate allows the code you generate to run correctly according to the actual clock
rate of the hardware.

When you generate code for C6000 targets from Simulink models, you may
encounter the software timer. The timer is invoked automatically to handle
and create interrupts to drive your model if either of the following conditions
occur:

¢ If your model does not include ADC or DAC blocks

DM642EVM

® When the processing rates in your model change (the model is multirate)

Correctly generating interrupts for your model depends on the clock rate of the
CPU on your target. You can change the rate with the DIP switches on the
board or from one of the software utilities provided by Texas Instruments.

For the timer software to calculate the interrupts correctly, Embedded Target
for TI C6000 DSP needs to know the actual clock rate of your target processor
as you configured it. CPU clock speed lets you tell the timer the rate at which
your target CPU runs, which is the rate to use to match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock speed to calculate
the time for each interrupt. For example, if your model includes a sine wave
generator block running at 1 KHz feeding a signal into an FIR filter block, the
timer needs to create interrupts to generate the sine wave samples at the
proper rate. Using the clock rate you choose, 100 MHz for example, the timer
calculates the sine generator interrupt period as follows for the sine block:

¢ Sine block rate = 1 KHz, or 0.001 s/sample
¢ CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires
100,000,000/1000 = 1 Sine block interrupt per 1,000,000 clock ticks

So you must report the correct clock rate or the interrupts come at the wrong
times and the results are incorrect.

Simulator

Select this option when you are targeting a simulator rather than a hardware
target. You must select Simulator to target your code to a C6000 simulator.

Enable High-Speed RTDX

Select this option to tell the code generation process to enable high-speed
RTDX for this model.

Board Custom Code

Entries in this group let you specify the locations of custom source files or
libraries or other functions. Five options provide access to text areas where you
enter files and file paths.

enter files and file paths.

When you enter a path to a file, library, or other custom code, use the string

5-293

DM642EVM

5-294

$(install_dir)

to refer to the CCS installation directory. The examples in the following figure
use the string.

Enter new paths or files (custom code items) one to a line. Include the full path
to the file for libraries and source code. Board custom code options do not
support functions that use return arguments or values. Only functions of type
void fname void are valid as entries in these parameters.

® Source files — you enter the full paths to source code files to use with this
target. By default there are no entries in this parameter.

® Include paths — If you require additional files on your path, you add them
by typing the path into the text area. The default setting does not include
additional paths.

® Libraries — these entries identify specific libraries that the target requires.
They appear on the list by default.

Board Custormn Code

Source files ﬂ $iinstall_diftboardshevmdmbd :I
Include paths ilibhewrmdmB42bs lib

Initialize functions
Terminate functions

[=

® Initialize functions — C6455 DSK targets require a specific
initialization function, listed here as DSK6455_init. Enter others if needed.

DM642EVM

Board Custom Code

Source files -
Include paths _I
Libraries

Anitialize functions
Terminate functions

|

EvMDMEAZ_init

~|

® Terminate functions —enter a function to run when a program terminates.
The default setting is not to include a specific termination function.

CCS Board Name

Contains a list of all the boards defined in CCS Setup. From the list of available

boards, select the one that you are targeting your code for.

CCS Processor Name

Lists the processors on the board you selected for targeting in CCS board
name. In most cases, only one name appears because the board has one
processor. In the multiprocessor case, you select the processor by name from

the list.

Memory Pane

When you target any board, you need to specify the layout of the physical
memory on your processor and board to determine how use it for your program.
For supported boards, the board-specific target preferences blocks set the
default memory map.

5-295

DM642EVM

5-296

} C6000 Target Preferences = o] %]

| Sections | DSP/BIOS Ii
Physical memory

isran PO EY

SDRAM
Address: I 0x00000000
Length: I 0x00020000
Cantents: ICUde&Data .|

Board Info

LI Add | Remove |
Heap
[~ Create heap Heap size: 256
[~ Define lakel Heap lahel: W
L2 cache

¥ Enahle L2 cache

LY cache size: |128 kh 'l

OK Apply | Cancel | Help

The Memory pane contains memory options in three areas:

¢ Physical Memory — specifies the processor and board memory map

® Heap — specifies whether you use a heap and determines the size in words
¢ L2 Cache — enables the L2 cache (where available) and sets the size in kB
Be aware that these options may affect the options on the Sections pane. You

can make selections here that change how you configure options on the
Sections pane.

DM642EVM

Most of the information about memory segments and memory allocation is
available from the online help system for Code Composer Studio.

Physical Memory Options

This list shows the physical memory segments available on the board and
processor. By default, target preferences blocks show the memory segments
found on the selected processor. In addition, the Memory pane on
preconfigured target preferences blocks shows the memory segments available
on the board, but off of the processor. Target preferences blocks set default
starting addresses, lengths, and contents of the default memory segments.
DM642EVM boards provide ISRAM and SDRAM memory segments by default.

Name

When you highlight an entry on the Physical memory list, the name of the
entry appears here. To change the name of the existing memory segment, select
it in the Physical memory list and then type the new name here.

Note You cannot change the names of default processor memory segments.

To add a new physical memory segment to the list, click Add, replace the
temporary label in Name with the one to use, and press Return. Your new
segment appears on the list.

After you add the segment, you can configure the starting address, length, and
contents for the new segment. New segments start with code and data as the
type of content that can be stored in the segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as newsegment or
newSegment.

Address

Address reports the starting address for the memory segment showing in
Name. Address entries are in hexadecimal format and limited only by the
board or processor memory.

When you are using a processor-specific preferences block, the starting address
shown is the default value. You can change the starting value by entering the
new value directly in Address when you select the memory segment to change.

5-297

DM642EVM

5-298

Length

From the starting address, Length sets the length of the memory allocated to
the segment in Name. As in all memory entries, specify the length in
hexadecimal format, in minimum addressable data units (MADUs). For the
C6000 processor family, the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the length shown is
the default value. You can change the value by entering the new value directly
in this option.

Contents

Contents details the kind of program sections that you can store in the memory
segment in Name. As the processor type for the target preferences block
changes, the kinds of information you store in listed memory segments may
change. Generally, the Contents list contains these strings:

® Code — allow code to be stored in the memory segment in Name.
® Data — allow data to be stored in the memory segment in Name.

® Code and Data — allow code and data to be stored in the memory segment
in Name. When you add a new memory segment, this is the default setting
for the contents of the new element.

You may add or use as many segments of each type as you need, within the
limits of the memory on your processor.

Add

Click Add to add a new memory segment to the target memory map. When you
click Add, a new segment name appears, for example NEWMEM1, in Name and on
the Physical memory list. In Name, change the temporary name NEWMEM1 by
entering the new segment name. Entering the new name, or clicking Apply
updates the temporary name on the list to the name you enter.

Remove

This option lets you remove a memory segment from the memory map. Select
the segment to remove on the Physical memory list and click Remove to
delete the segment.

Create Heap

Selecting this option enables creating the heap, and enables the Heap size
option.

DM642EVM

Using this option you can create a heap in any memory segment on the
Physical memory list. Select the memory segment on the list and then select
Create heap to create a heap in the select segment. After you create the heap,
use the Heap size and Define label options to configure the heap.

The location of the heap in the memory segment is not under your control. The
only way to control the location of the heap in a segment is to make the segment
and the heap the same size. Otherwise, the compiler determines the location of
the heap in the segment.

Heap Size

After you select Create heap, this option lets you specify the size of the heap
in words. Enter the number of words in decimal format. When you enter the
heap size in decimal words, the system converts the decimal value to
hexadecimal format. You can enter the value directly in hexadecimal format as
well. Processors may support different maximum heap sizes.

Define Label

Selecting Create heap enables this option that allows you to name the heap.
Enter your label for the heap in the Heap label option.

Heap Label

Enabled by selecting Define label, you use this option to provide the label for
the heap. Any combination of characters is accepted for the label, except
reserved characters in C/C++ compilers.

Enable L2 Cache

DM642 processors support an L2 cache memory structure that you can
configure as ISRAM and partial cache.

L2 Cache size

When you enable the L2 cache, use this list to determine the size of the cache
allotted. Select the size of the cache from the list.

Sections Pane

Options on this pane let you specify where various program sections should go
in memory. Program sections are distinct from memory segments — sections
are portions of the executable code stored in contiguous memory locations.
Commonly used sections include .text, .bss, .data, and .stack. Some sections
relate to the compiler, some to DSP/BIOS, and some can be custom sections as
you require.

5-299

DM642EVM

For more information about program sections and objects, refer to the CCS
online help.

} C6000 Target Preferences = o] %]

| DSP/BIOS li

4 | Description: ¢ gcode

Board Info | hemary

Cormpiler sections

guitch
hss

far Flacement: ISDRAM .l
.cinit
pinit LI

DEF/BIOS sections/objects

Description: Argument huffer
.ghlinit
tredata

.sg_sdata Placement: |ISRAM 'I
.ohj

-hiosg LI

Data ohject placement: ISDRAM 'l
Code ohject placement: ISDRAM 'l
Custormn sections

& | Mame: I_mw_isrambuﬁ
Placement: I|SRAM 'l

LI Audd | Remaove |

OK | Apply | Cancel | Help |

Within this pane, you configure the allocation of sections for Compiler,
DSP/BIOS, and Custom needs.

This table provides brief definitions of the kinds of sections in the Compiler
sections, DSP/BIOS sections/objects, and Custom sections lists in the pane.

5-300

DM642EVM

All sections do not appear on all lists. The list the string appears on is shown

in the table.

String Section List Description of the Section Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the code

.bios DSP/BIOS DSP/BIOS code if you are using DSP/BIOS
options in your program

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global, defined
as far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS startup
initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the target
program can read

.pinit Compiler Load allocation of the table of global object
constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Compiler The global stack

5-301

DM642EVM

5-302

String Section List Description of the Section Contents

.switch Compiler Jump tables for switch statements in the
executable code

.sysdata DSP/BIOS Data about DSP/BIOS
.sysinit DSP/BIOS DSP/BIOS initialization startup code
.sysmem Compiler Dynamically allocated object in the code

containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants

.trcdata DSP/BIOS TRC mask variable and its initial value

section load allocation

You can learn more about memory sections and objects in your Code Composer
Studio online help.

Compiler Sections

During program compilation, the C6000 compiler produces both uninitialized
and initialized blocks of data and code. These blocks get allocated into memory
as required by the configuration of your system. On the Compiler sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections. The initialized
sections are:

® .cinit

e .const

® .switch

e _text (created by the assembler)

These sections are uninitialized:

.bss (created by the assembler)
.far

.stack

.sysmem

DM642EVM

Other sections appear on the list as well:
® .data (created by the assembler)

® .cio

® .pinit

Note The C/C++ compiler does not use the .data section.

When you highlight a section on the list, Description shows a brief description
of the section. Also, Placement shows you where the section is presently
allocated in memory.

Description

Provides a brief explanation of the contents of the selected entry on the
Compiler sections list.

Placement

Shows you where the selected Compiler sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains ISRAM and SDRAM when you use
this block.

DSP/BIOS Sections

During program compilation, DSP/BIOS produces both uninitialized and
initialized blocks of data and code. These blocks get allocated into memory as
required by the configuration of your system. On the DSP/BIOS sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections.

Description

Provides a brief explanation of the contents of the selected DSP/BIOS sections
list entry.

Placement

Shows where the selected DSP/BIOS sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments available on
C6000 processors, and changes based on the processor you are using.

5-303

DM642EVM

5-304

DSP/BIOS Object Placement

Distinct from the entries on the DSP/BIOS sections list, DSP/BIOS objects like
STS or LOG, if your project uses them, get placed in the memory segment you
select from the DSP/BIOS Object Placement list. All DSP/BIOS objects use
the same memory segment. You cannot select the location for individual
objects.

Custom Sections

When your program uses code or data sections that are not included in either
the Compiler sections or DSP/BIOS sections lists, you add the new sections
to this list. Initially, the Custom sections list contains no fixed entries, just a
placeholder for a section for you to define.

Name

You enter the name for your new section here. To add a new section, click Add.
Then replace the temporary name with the name to use. Although the
temporary name includes a period at the beginning you do not need to include
the period in your new name. Names are case sensitive. NewSection is not the
same as newsection, or newSection.

Placement

With your new section added to the Name list, select the memory segment to
which to add your new section. Within the restrictions imposed by the
hardware and compiler, you can select any segment that appears on the list.

Add

Clicking Add lets you configure a new entry to the list of custom sections. When
you click Add, the block provides a new temporary name in Name. Enter the
new section name to add the section to the Custom sections list. After typing

the new name, click Apply to add the new section to the list. You can also click
OK to add the section to the list and close the dialog box.

Remove

To remove a section from the Custom sections list, select the section and click
Remove.

DSP/BIOS Pane

Options on this pane let you specify how to configure tasking features of
DSP/BIOS.

DM642EVM

The asynchronous task scheduler uses these options when you select the
Incorporate DSP/BIOS option in the model configuration set. By default,
Incorporate DSP/BIOS is selected and the Embedded Target for TI C6000
DSP creates separate DSP/BIOS tasks for each sample time in your Simulink
model.

DSP/BIOS tasking blocks provide parameters on their block dialog boxes so you
can specify the DSP/BIOS stack size and stack segment (where the stack is in
memory) for asynchronous tasks created by the DSP/BIOS Task and
DSP/BIOS Triggered Task blocks.

The code generation process uses the options on this pane to configure TSK
entries in the TSK Task Manager in CCS when it creates DSP/BIOS tasks.

When you clear the Incorporate DSP/BIOS option, you disable the options in
this pane. Your project does not include DSP/BIOS tasks, and Embedded
Target for TI C6000 DSP uses an interrupt-based scheduler.

For more information about tasks, refer to the Code Composer Studio online
help.

5-305

DM642EVM

5-306

} C6000 Target Preferences o [l PS
Board Info | - Memory | Siiione |DSF'IEIIOS|7

TSK Task Manager Properties

Default stack size (bytes): IIJDBE
Stack segment for static tasks: ISDRAM j
Stack segment for dynamic tasks: ISDRAM j

{must have a heap allocated)

OK Apply Cancel Help

Within this pane, you configure the options for DSP/BIOS tasks, such as the
task manager and scheduler configuration. Note that the Sections pane
includes DSP/BIOS configuration options as well. The options specify the stack
use and locations on the stack for static and dynamic tasks.

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU context
during thread preemption for task threads. This option sets the size of the

DM642EVM

DSP/BIOS stack in bytes allocated for each task. 4096 bytes is the default
value. You can set any size up to the limits for the processor. Set the stack
size so that tasks do not use more memory than you allocate. While any
task can use more memory than the stack includes, this might cause the
task to write into other memory or data areas, possibly causing
unpredictable behavior.

Stack segment for static tasks

Use this option to specify where to allocate the stack for static tasks. Static
tasks are created whether or not they are needed for operation, compared
to dynamic tasks that the system creates as needed. Tasks that your
program uses often might be good candidates for static tasks. Infrequently
used tasks usually work best as dynamic tasks.

The list offers options SDRAM and ISRAM for locating the stack in memory,
with SDRAM as the default section. The Memory pane provide more options
for the physical memory on the processor.

Stack segment for dynamic tasks

Like static tasks, dynamic tasks use a stack as well. Setting this option
specifies where to locate the stack for dynamic tasks. In this case, SDRAM is
the only valid stack location in memory.

5-307

DM642 EVM Audio ADC

Purpose
Library

Description

Line In
OmME42 EVM |

ADC

Audio ADC

5-308

Audio codec and peripherals
DM642 EVM Board Support Library in Embedded Target for TI C6000 DSP

Use the DM642 EVM ADC (analog-to-digital converter) block to capture and
digitize analog audio signals from external sources, such as signal generators,
frequency generators, or audio devices. Placing a DM642 EVM ADC block in
your Simulink block diagram lets you use the audio coder-decoder module
(codec) on the DM642 EVM to convert an analog input signal to a digital signal
for the digital signal processor.

Most of the configuration options in the block affect the codec. However, the
Output data type, Samples per frame and Scaling options are related to the
model you are using in Simulink, the signal processor on the board, or direct
memory access (DMA) on the board. In the following table, you find each option
listed with the DM642 EVM hardware affected.

Option Affected Hardware

ADC Source Codec

Mic Codec

Output data type TMS320DM642 digital signal processor
Sample rate (Hz) Codec

Samples per frame Direct memory access functions

Stereo Codec

You can select one of two input sources from the ADC source list:

¢ Line In — the codec accepts input from the line in connector (LINE IN) on
the board’s mounting bracket.

® Mic in — the codec accepts input from the microphone connector (MIC IN)
on the board mounting bracket.

Use the Stereo check box to indicate whether the audio input is monaural or
stereo. Clear the check box to choose monaural audio input. Select the check
box to enable stereo audio input. Monaural (mono) input is left channel only,

DM642 EVM Audio ADC

Dialog Box

|

but the output sends left channel content to both the left and right output
channels; stereo uses the left and right channels.

You must set the sample rate for the block. From Sample rate (Hz), select the
sample rate for your model. Sample rate (Hz) specifies the number of times
each second that the codec samples the input signal. Sample rates range from
8 kHz to 96 kHz, in preset rates. You must select from the list; you cannot enter
a sample rate that is not on the list.

E] Source Block Parameters: Audio ADC il
~DME42EY I ADC (mask)

Canfigures the AICZ3 codec and the TMS33200ME42 peripherals to outputa
stream of data collected fram the analog jacks on the DME4Z Evaluation Module.

During simulation, this block simply outputs zeros.

—Parameters
ADC source: ¥
7 +20 dB hic gain boost
[¥ Stereno
Sample rate: I & kHz |

samples per frame:
(54

™ Inherit sample time:

(08 I Cancel | Help

ADC source
The input source to the codec. Line In is the default.

+20 dB Mic gain boost
Boosts the input signal by +20dB when ADC source is Mic. Gain is applied
before analog-to-digital conversion.

Stereo
The number of channels input to the A/D converter. Clearing this option
selects the left channel; selecting this option selects both left and right

5-309

DM642 EVM Audio ADC

See Also

5-310

input channels. To configure the DM642 EVM board for monaural
operation, clear the Stereo check box. When you first open the dialog box,
Stereo is selected. The default is stereo operation.

Sample rate (Hz)

Sampling rate of the A/D converter. Available sample rates are set by the
codec. Default rate is 8 kHz. Options range up to 96 kHz. Select the sample
rate from the list.

Samples per frame

Creates frame-based outputs from sample-based inputs. This parameter
specifies the number of samples of the signal buffered internally by the
block before it sends the digitized signals, as a frame vector, to the next
block in the model. 64 samples per frame is the default setting. Notice that
the frame rate depends on the sample rate and frame size. For example, if
your input is 32 samples per second, and you select 64 samples per frame,
the frame rate is one frame every two seconds. The throughput remains the
same at 32 samples per second.

Inherit sample time

Selects whether the block inherits the sample time from the model base
rate/Simulink base rate as determined in the Solver options in
Configuration Parameters. Selecting Inherit sample time directs the
block to use the specified rate in model configuration. You must select this
option to use the block in a function subsystem with the asynchronous
scheduler.

DM642 EVM Audio DAC

DM642 EVM Audio DAC

Purpose
Library

Description

DME42 EVM

DAC

Audic DAC

Dialog Box

See Also

Configure codec to convert digital audio input to analog audio output
DM642 EVM Board Support Library in Embedded Target for TI C6000 DSP

Adding the DM642 EVM DAC (digital-to-analog converter) block to your
Simulink model provides the means to output an analog signal to the LINE
OUT connection on the DM642 EVM mounting bracket. When you add the
DM642 EVM DAC block, the digital signal received by the codec is converted
to an analog signal. After converting the digital signal to analog form
(digital-to-analog conversion), the codec sends the signal to the output audio
jack.

While converting the digital signal to an analog signal, the codec rounds
floating point data to the nearest integer, thus rounding 0.51 up to 1.0 or 4.49
down to 4.0.

Setting the sample rate configures the codec sampling rate for the analog
output data stream. The rates range from 8000 Hz, similar to plain old
telephone service quality, to 48 kHz (CD quality audio) to 96 kHz.

|2] sink Block Parameters: Audio DAC X|
—DOrB42EY M DAC (mask)

Configures the AIC23 codec and the TMS3200MB42 peripherals to
send a stream of data to the output jack an the DE4Z DSP
Ewvaluation Module.

—Farameters

Sample rate:l 8 kHz j

Ok I Cancel Help | Al |

Sample rate (Hz)

Sampling rate of the D/A converter. Available output sample rates are set
by the codec. Default rate is 8000 Hz (8 kHz) and the maximum rate is
96000 Hz (96 kHz). Choose the appropriate rate from the list.

DM642 EVM Audio ADC

5-311

DM642 EVM FPGA GPIO Read

Purpose
Library

Description

OmME42 EVM
User GPIC Read
(00001111}

Read

Dialog Box

5-312

User GPIO registers to read from selected pins

DM642 EVM Board Support Library in Embedded Target for TI C6000 DSP

Added to your model, this block reads logical values from the GPIO registers
you select in the dialog box and sends the data out to downstream blocks as an

unsigned 8-bit word.

The DM642 EVM offers eight general purpose I/O registers that you can read

from and write to for your needs. Each I/O
depending on the signal at the pin.

pin represents either a logical 0 or 1

An important note — you cannot read and write to the same I/O registers with
the FPGA GPIO Read and FPGA GPIO Write blocks. If you read register 1 with
the read block you cannot write to register 1 with the write block. This applies

to all eight registers.

=] source Block Parameters:
—DhB42 BV User GFIO Read (mask)

Configure DhB42 ENVM User GPIO registers,
implermented through on-hoard FPGA, to read logic 0
ot 1 values from User GRIO pins.

—Farameters

i
[v it 1
[v hit 2
[v hit 3
[hit4
[hith
[hith
[hit?

Sample time:

[0.01

(8] I Cancel Help

DM642 EVM FPGA GPIO Read
|

bit 0 to bit 7

Each bit represents the logical value at one GPIO register. Bit 0 is register 0,
bit7 is register 7. Select the bits that represent the registers to read. Note that
the read and write functions cannot share the same registers. If you select a
register to read, you cannot write to that register.

Sample time

Time in seconds between consecutive inputs to the registers. Enter any real
positive value or a variable name from your workspace.

See Also DM642 EVM FPGA GPIO Write

5-313

DM642 EVM FPGA GPIO Write

Purpose
Library

Description

DmME42 EVM
User GPID Write
(11110000}

Write:

Dialog Box

5-314

Write to GPIO registers
DM642 EVM Board Support Library in Embedded Target for TI C6000 DSP

Added to your model, this block writes logical values to the GPIO registers you
select in the dialog box, reading the data from an upstream block as an
unsigned 8-bit word.

The DM642 EVM offers eight general purpose I/O registers that you can read
from and write to for your needs. Each I/O pin represents either a logical 0 or 1
depending on the signal at the pin.

An important note — you cannot read and write to the same I/O registers with
the FPGA GPIO Read and FPGA GPIO Write blocks. If you write register 1
with the write block you cannot read from register 1 with the read block. This
applies to all eight registers.

E] Sink Block Parameters: Write il
—DOrAB42 BV User GRIO ‘White (mask)

Configure DhE42 ENM Llser GRIO registers, implemented through
on-board FPGA, 1o autput logic 0 or 1 walues on User GFIO pins.

—Farameters

¥ hit4
v hit&
W hit G
v hit?

Ok I Cancel Help Apply

DM642 EVM FPGA GPIO Write
|

bit 0 to bit 7

Each bit represents the logical value at one GPIO register. Bit 0 is register
0, bit7 is register 7. Select the bits that represent the registers to write.
Note that the read and write functions cannot share the same registers.
When you select a register to write to, you cannot read that register.

Sample time

Time in seconds between consecutive inputs to the registers. Enter any real
positive value or a variable name from your workspace.

See Also DM642 EVM FPGA GPIO Read

5-315

DM642 EVM Video ADC

Purpose

Library

Description

DME4Z2 EVM
TVPS14E

Video ADC

Video Capture

5-316

Video decoders to capture analog video
DM642 EVM Board Support Library in Embedded Target for TI C6000 DSP

Adding this block to a model enables code generated from your model to
perform the following tasks:

1 Capture analog video data from the video input ports on the DM642 EVM.
2 Convert the input to a format and mode you define in the block.
3 Output the converted digital video for further downstream processing.

Adding two of these blocks to a model lets you capture two separate video data
streams and prepare them for display simultaneously, such as in
picture-in-picture mode.

The block captures and buffers one frame (two fields for NTSC standard) of
analog input video from the input ports, converts the buffered video to the
specified format, and then outputs the converted video frame as 8-bit unsigned
integer data for further processing.

Input to the DM642 EVM must be analog National Television Standards
Committee (NTSC) video format. The block captures and processes data in
frames, not fields.

To configure the format for the output video, the block offers output format
options that control how the block handles color data. The block also offers a
sample time option to let you set the frame rate for video output from the block.

Note This block does not provide output video for display. Use the DM642
EVM Video DAC to generate video data to output to the board video output
connectors.

When you add this block to a Simulink model, it has no affect in your
simulation — it outputs a string of zeros. Generating code from a model that
includes this block produces the code needed for capturing data on your
evaluation module by adding

¢ Video device configuration code for the chosen mode

DM642 EVM Video ADC

¢ Code used to copy the run time buffer

To use video in a Simulink model, use one of the available video source blocks
to introduce video data to your model.

Options for the block let you configure the digital video format and video mode
for the data output by the block.

NTSC TV systems use interlaced scanning to create TV frames from fields. The
even and odd TV lines are separated into even and odd fields that combine to
make a complete TV frame image. For output, the block always provides
complete frames, consisting of two fields, which are available at any instant.
When the sample time you specify for the block is different from the NTSC
frame rate of 30Hz, you may encounter visible anomalies in the video stream
from the block.

Notes About Converting NTSC Video Input From YCbCr to RGB24

When you choose to convert your NTSC YCbCr-defined video input to RGB24
(8:8:8 RGB) for output from the block, the block performs an intermediate
conversion step that follows a standard process for conversion (as described by
Graphical Device Interface (GDI) color space conversions documentation from
the International Color Consortium (ICC)).

First, the block converts your YCbCr input signal to 5:6:5 RGB format where
the red and blue channels of the source use a 5-bit representation and the green
channel uses 6 bits.

Now the block converts your 5:6:5 RGB to 8:8:8 RGB using the following
conventions:

1 For the red and blue 5-bit channels, it copies the three most significant bits
(MSB) from the 5-bit source word and append them to the lower order end
of the target word.

2 For the green 6-bit channel, it copies the two MSBs from the green source
word and append them to the lower order end of the target green word.

The results is to output three RGB channels — red, green, and blue — each
with 8-bit words.

For example, to convert hexadecimal values by this algorithm, 5:5:5 RGB data
of (0x19, 0x33, 0x1A) becomes (0xCE, 0xCF, 0xD6) of 8:8:8 RGB output.

5-317

DM642 EVM Video ADC

Dialog Box

5-318

To do the conversion in the binary case for 5:5:5 RGB data:

1 blue data 1 1101 converts to 11101111
2 for the green channel, conversion takes 11 0011 to 1100 1111
3 red data 1 0101 becomes 1010 1101 (same algorithm as blue data)

To maximize the speed of the RGB conversion, the Video ADC block provides
color space conversion using a routine hand-written in assembly language and
optimized for the DM64x processor core. Using the optimized color space
conversion code replaces the Color Space Conversion block available from the
Video and Image Processing (VIP) Blockset. While you can use any compatible
VIP blockset block with the DM642, this particular color space conversion
operation is handled better by the conversion code included in the ADC block.

2] source Block Parameters: Video Capture X|

—DM6B42 EVM Video ADC (mask)

Configures the DME42 EVM board peripherals and on-board video decoder
device to receive a stream of video data from the input video port. The output of
the block is a stream of 8-bit per pixel image frames captured from the input
analog video stream. Interlaced frames are combined to form one progressive
image atthe output ports.

—Parameters
Decoder type: | JNisE1E -
Inputportl Port0 j
OutputformatlYCbCr j
Sample time:
[1/30
Data order:l Row major j
0K I Cancel | Help |
Decoder type

Configures the block options to support either the TVP5146 Decoder on the
DM642 EVM or the SAA7115 Decoder, depending on the model of your

DM642 EVM Video ADC

board. Choose one option from the list — TVP5146 or SAA7115. When you
select SAA7115 for the type of decoder, the dialog box adds a new option —
Output Mode. Generally, older DM642 EVM boards use the SAA7115
decoder. Newer boards use the default setting TVP5146 decoder. Refer to
“Identifying Your DM642 EVM Board Revision” on page A-6 for
information about identifying the revision of your DM642 EVM.

Input port

Directs the block to capture video from either the 0 or 1 video input port on
the DM642 EVM. The block does not support port 2 for video input.

Output mode (available only when Decoder type is SAA7115)

Because all input video to the board is in analog NTSC 720-by-480 mode,
this option scales the output from the block to different dimensions. Output
modes for the block include various modes, as shown in this table. The
important information in the table is the size of the images. Though the
input to the block is always analog NTSC video, the output from the block
uses the scaling capability of the video decoder to scale the digitized output
image to one of the available sizes listed in the table

Digital Output Mode

Description

NTSC 720x480

NTSC 640x480

NTSC SIF 320x240

NTSC QCIF 176x144

NTSC SQCIF 128x96

Scales the output to higher definition TV
mode.

Scales the output to standard (SDTV) mode.

Scales the output to standard interchange
format NTSC. Derived from CCIR 601 video
(most often).

Scales the output to 1/4 the resolution of CIF
video.

Scales the output to 1/4 the resolution of QCIF
video.

This option appears in the dialog box when you select SAA7115 for the

Decoder type.

5-319

DM642 EVM Video ADC

Web cameras, PAL format video, and S-Video inputs are not supported.

Output format
Determines how the block represents color data in the output. Choose one
of the following color representations according to what your model and
algorithm require.

Digital Output Format Description

RGB24 Output uses 8 bits each of red, green, and blue
colors to represent the color of each pixel in
the image. RGB color space is
device-dependent.

YCbCr Output from the block includes one luminance
channel Y (essentially the black/white signal)
and two chrominance (color) channels Cb and
Cr to represent the color image data per pixel.
This is the digital standard color space DVDs
use.

Y Black/White video. No color/chromaticity
values.

Sample time
Tells the block how often to take frames from the video decoder and buffers.
While NTSC video runs at 30 frames/s (1/30 s sample time), you can sample
at any rate below or at the NTSC rate. When you enter a sample time
shorter than 1/30 s (more than 30 frames per second), the block returns an
error.

Remember that sampling times that are not 1/30th of a second may capture
incomplete frames.

Also note that

= The sample time you specify becomes the DM642 timer period that
drives the execution of your model.

= Your generated application is not synchronized with the input video
signal — the application always runs on the processor timer.

5-320

DM642 EVM Video ADC

See Also

Data order

With data order, you control the way the video decoder stores and outputs
video data fields and frames of images. Choose one of these options from
the list.

= Row major — store video data in row major order. This is the default
setting and matches most video data.

= Column major — store video data in column major order. Simulink® and
MATLAB both use this format to store images and matrices.

DM642 EVM Video ADC blocks store the image data in row major format
because most video capture devices use a scanning order of left-to-right and
top-to-bottom, favoring the rows.

MATLAB and Simulink use column major ordering to store image and matrix
data. Therefore, some of the Simulink blocks may not work correctly or as
expected with the DM642 EVM Video ADC blocks.

To address this problem, the Video ADC blocks include an option Data order
to let you select either row major or the column major storage formats. By
default, these blocks use row major data format.

When the column major data ordering option is selected, the block performs an
explicit transposition on the image data to map the data format from row major
to column major order. To minimize the processor time spent on the
transposition, the block uses optimized assembly routines to accomplish the
image transposition.

DM642 EVM Video DAC

5-321

DM642 EVM Video DAC

Purpose
Library

Description

T
DMESZ2 EVM
Tk 3AARTIOS

Video DAC
Tr

Video Display

5-322

Video encoder to display video
DM642 EVM Board Support Library in Embedded Target for TI C6000 DSP

In the project generated from a model, this block provides the code to gather
video from another block in the model, and direct the video stream to the video
output port on the board.

You should input unsigned 8-bit integers to the block in the specified mode.

Adding this block to a model enables code generated from your model to
perform the following tasks:

1 Capture digital video data from the application on your DM642 EVM.

2 Buffer the captured video into frames for NTSC display — two fields per
frame and 30 frames per second, or SVGA display — RGB24 color with
noninterlaced frames.

3 Convert to analog video.
4 Output the converted analog video to the EVM Video Out ports.

Unlike the DM642 EVM Video ADC block, this DAC block does not convert the
video between formats. Nor does this block inherit any settings from the
DM642 EVM Video ADC block, as some of the other C6000 DAC blocks do.

The Mode option specifies both the video format the block accepts and the
format the block outputs to the video output ports on the EVM.

To be able to be displayed, images that you send to the block should be equal to
or smaller than the target display size. If the input images are smaller than the
target display size, the block pads the image by adding zeros to the image.

When you add this block to your Simulink model, it has no affect on your
simulation — it outputs a string of zeros. In code generation, the block creates
the device code needed to buffer, convert, and send video to the output port on
the EVM.

DM642 EVM Video DAC
|

Dialog Box

E] Sink Block Parameters: Video Display il

—DM6B42 EVM Video DAC (mask)

Configures the DME42 EVM board peripherals and on-board SAAT105 device to
send a stream of video data to the output video port. The block inputs are of
unsigned 8-bit integer type.

The size of the input images must be less than or equal to the size ofthe display.
An implicit zero-padding is perfformed when the inputimage is smaller than the
display. The image can be optionally centered on the display.

—Parameters
Mode: | NTSC 720x480 YCbCr =l
Data order:l Row major j

oK I Cancel | Help | Apply |

Mode

Specifies the video format for the block. The block then sends video in this
format to the video output port on the EVM. The Mode parameter offers the
following options:

Analog Output Mode Description

NTSC 720x480 YCbCr Analog output of video data in 720-by-480
pixels format with full color

NTSC 640x480 Y Analog video output in 640-by-480 pixels
format with black and white only (luminance).
No color data.

SVGA 800x600 RGB24 Full super VGA format 800-by-600 pixels with
three color channels: 8-bit red, 8-bit green,
and 8-bit blue data.

5-323

DM642 EVM Video DAC

5-324

Data order

With data order, you control the way the video decoder stores and outputs
video data fields and frames of images. Choose one of these options from
the list.

= Row major — store video data in row major order. This is the default
setting and matches most video data.

= Column major — store video data in column major order. Simulink® and
MATLAB both use this format to store images and matrices.

DM642 EVM Video DAC blocks store the image data in row major format
because most video display devices use a scanning order of left-to-right and
top-to-bottom, favoring the rows.

MATLAB and Simulink use column major ordering to store image and matrix
data. Therefore, some of the Simulink blocks may not work correctly or as
expected with the DM642 EVM Video DAC blocks.

To address this problem, the Video DAC blocks include an option Data order
to let you select either row major or the column major storage formats. By
default, these blocks use row major data format.

When the column major data ordering option is selected, the block performs an
explicit transposition on the image data to map the data format from row major
to column major order. To minimize the processor time spent on the
transposition, the block uses optimized assembly routines to accomplish the
image transposition.

Center Image
Directs the block to center the output image on the display. Note that
centering the image requires some computation by the processor so there
are small time and CPU cycles penalties for choosing this option. For that
reason, Center image is cleared by default.

Another note of interest — some cameras pad their video output with zeros
to ensure that the display does not cut off the image on one side, usually
the left. Images that include such padding may appear to be off-center on
the display. In fact, while the displayed image may not appear centered,
the electronic image (the data that compose the displayed image plus the
padding which you cannot see) is centered in the display area.

DM642 EVM Video DAC
|

See Also DM642 EVM Video ADC

5-325

DM642 EVM LED

Purpose
Library

Description

DhE42 EVIM
LED

LED

Dialog Box

5-326

Control LEDs
DM642 EVM Board Support Library in Embedded Target for TI C6000 DSP

Controls the user LEDs on the DM642 EVM while the processor executes your
generated code. To trigger the LEDs, input an unsigned 8-bit integer to the
block. In response, the eight user-controlled LEDs reflect the binary equivalent
of that input value — turning off an LED is 0 and turning on an LED is 1.

During operation, the LED block inherits the sample time from the upstream
block in the model. Therefor, each time the model operation encounters the
LED block, the block writes the desired output value to the LEDs.

[=]Block Parameters: LED i

DME42 EVM LED [maszk)

Contrals the User LED = an the DME42 BV duning execution of generated code. The
input mugt be an ungigned 8-bit integer, and the binany equivalent of that value will be
reflected on the eight uger-controlled LE D=,

LCancel Help Apply

You see the block does not provide user options. Adding the block to your model
adds the ability to control the LEDs.

DM642 EVM Video Port

Purpose
Library

Description

OnMg42
Video Port [
(Port 0)

Raw Capture

Video port to receive video data from video input port
DM642 EVM Board Support Library in Embedded Target for TI C6000 DSP

Adding this block to your model lets you define the format of raw video
captured by the video port on the DM642 EVM. The block outputs video as
a stream of image frames built from the defined input.

You can select the video port the block reads from, set the size of the input data
in bits per pixel, and define the frame sizes in pixels and lines.

When your process captures standard video input, like NTSC format video,
another block for the DM642 EVM may be appropriate — the DM642 EVM
Video ADC block.

By default, the block settings define NTSC format input video to capture — 640
pixels wide by 480 lines tall using 8 bits per pixel.

The block does not check your inputs to determine whether they form valid
frames. You must be sure the values you assign work for you application.

The block does not support video capture from port 2 on the EVM.

Blanking intervals, both horizontal and vertical, represent the time needed for
the scan to return to the starting point of the next line (the horizontal blanking
period) or field or frame (the vertical blanking period).

5-327

DM642 EVM Video Port

Dialog Box

5-328

E] Source Block Parameters: il
—DrB42 Yideo Part (mask)

Configures the DhE4Z video port to receive a stream
of wideo data fram the input video port. The output of

the block is a stream of image frames captured from
the input video stream.

—Farameters

Video Por AN -

MNumber of Bits Per Pixel:l B-bit (outputs wintd) j

Number of Fixels Fer Line:

(540

Mumber of Lines Per Frame:

[4a0

Pixel Clack Frequency (Hz):

[10e6

Harizontal Blanking (in Pixel Clocks):

[10

Yertical Blanking (in Pixel Clocks):

i

Data Drder:l Ficew major j

™ Inhetit sample time

(8] 8 I Cancel | Help

Video Port

Select the video port to be the source of the raw video data stream. Either
0 or 1 appear on the list and 0 is the default port.

Number of bits per pixel

Select the number of bits used to represent a pixel in the input video
stream. List entries tell you the input pixel representation and the data
type of the output pixels for each input size. You cannot enter values here.

Select from the list.

DM642 EVM Video Port

Number of pixels per line

Configure the width of each video frame in pixels. Enter the pixel count as
an integer greater than zero.

Number of lines per frame

Configure the height of a single frame of video in lines. Enter the number
of lines as an integer greater than zero. Combined with the Number of bits
per pixel, this specifies the video frame format.

Pixel clock frequency

Specify the rate at which picture elements (pixels) arrive at the block input.
Usually you enter this in Hz using scientific notation as shown by the
default value. You can enter the value in decimal notation as well.

Horizontal blanking (in pixel clocks)

The blanking signal that occurs at the end of each video scanning line.
Enter the value as an integer number of pixels. One video line comprises
the number of pixels in the line plus the horizontal blanking pixels.

Vertical blanking (in pixel clocks)

The blanking signal that occurs at the end of each video field or frame.
Enter this value as an integer number of lines (pixels). One frame includes
the number of lines in the height of the frame plus the additional blanking
lines.

Data order

With this option you tell the encoder whether to output video in row major
or column major order. Most video capture and display systems use row
major ordering. MATLAB and Simulink use column major order. As a
result, some Simulink blocks and MATLAB operations may not produce
the output you expect unless you change the ordering for video from the
default row major setting to column major.

Inherit sample time

Selects whether the block inherits the sample time from the model base
rate/Simulink base rate as determined in the Solver options in
Configuration Parameters. Selecting Inherit sample time directs the
block to use the specified rate in model configuration. Entering -1
configures the block to accept the sample rate from the upstream HWI,
Task, or Triggered Task blocks.

5-329

DM642 EVM Video Port

See Also DM642 EVM Video ADC, DM642 EVM Video DAC

5-330

DM642 EVM RESET

Purpose
Library

Description

Resat
DME42 EV I

Resai

Dialog Box

Reset to initial conditions
DM642 EVM Board Support in Embedded Target for TI C6000 DSP

Double-clicking this block in a Simulink model window resets the DM642 EVM
that is running the executable code built from the model. When you
double-click the Reset block, the block runs the software reset function
provided by CCS that resets the processor on your DM642 EVM. Applications
running on the board stop and the signal processor returns to the initial
conditions you defined.

Before you build and download your model, add the block to the model as

a stand-alone block. You do not need to connect the block to any block in the
model. When you double-click this block in the block library it resets your
DM642 EVM. In other words, anytime you double-click a DM642 EVM RESET
block you reset your DM642 EVM.

This block does not have settable options and does not provide a user interface
dialog box.

5-331

DSP/BIOS Hardware Interrupt

Purpose

Library

Description

DSP/BIOS

HWwI1

Hardware Interrupt

5-332

Generate Interrupt Service Routine
DSP/BIOS Library in Embedded Target for TI C6000 DSP

Creates an Interrupt Service Routine (ISR) that executes the task block or
subsystem that is downstream from the block. ISRs are functions that the CPU
executes in response to an external event.

Interrupt numbers for C6000 family processors range from 0 to 15, with 0
reserved for the reset ISR. The following table presents the set of interrupt
numbers for the C6713 processor. For more detailed and specific information
about interrupts, refer to Texas Instruments technical documentation for your
target processor.

Interrupt Number Default Event Module

0 RESET

1 NMI

2 Reserved

3 Reserved

4 GPINT4 GPIO

5 GPINT5 GPIO

6 GPINT6 GPIO

7 GPINT7 GPIO

8 EDMAINT EDMA

9 EMUDTDMA Emulation
10 SDINT EMIF

11 EMURTDXRX Emulation
12 EMURTDXTX Emulation
13 DSPINT HPI

DSP/BIOS Hardware Interrupt

|

Interrupt Number Default Event Module
14 TINTO Timer 0
15 TINT1 Timer 1

In models, you usually follow this block with either a DSP/BIOS Task or
DSP/BIOS Triggered Task block, or a subsystem function call block.

Dialog Box
L] source Block Parameters: Hardware I x|
—DER/BIOS Hyl Block imask)

Create Interupt Senvice Routine which will execute the
downstream subsystem or Task Block.

—Farameters
Interrupt numbers):

[5 8]

Freemption flag(s): preemptable-1, non-preemptable-0
[1]

¥ tanage own timer

Timet resalution (seconds):
f1/1000

[Enahle simulation input:

oK I Cancel Helg

Interrupt number(s)
Enter one or more integer values as a vector that represent interrupts.
Interrupts have any value from 0,the highest priority to 15, lowest priority.
As shown, enter the values enclosed in square brackets. For example,
entering

[3 5 15]

results in three interrupt routines. [5 8] is the default entry, specifying
two interrupts.

5-333

DSP/BIOS Hardware Interrupt

See Also

5-334

Preemption flag(s)

Higher priority interrupts can preempt interrupts that have lower priority.
To allow you to control preemption, use the preemption flags to specify
whether an interrupt can be preempted.

Entering 1 indicates that the interrupt can be preempted. Entering 0
indicates the interrupt cannot be preempted. When Interrupt numbers
contains more than one interrupt priority, you can assign different
preemption flags to each interrupt by entering a vector of flag values,
corresponding to the order of the interrupts in Interrupt numbers. If
Interrupt numbers contains more than one interrupt, and you enter only
one flag value here, that status applies to all interrupts.

In the default settings [0 1], the interrupt with priority 5 in Interrupt
numbers is not preemptible and the priority 8 interrupt can be preempted.

Manage own timer

The ISR generated by the this block can manage its own time by reading
time from the clock on the board. Selecting this option directs the ISR to
maintain the time itself. When you select Manage own timer, you enable
the Timer resolution option that reports the timer resolution the ISR
uses.

Timer resolution (seconds)
When you direct the block to manage its own time, this option (available
only when you select Manage own timer) reports the resolution of the
clock. Timer resolution is a read-only parameter. You cannot change the
value.

Enable simulation input

Selecting this option adds an input port to the block for simulating inputs
in Simulink. Connect interrupt simulation sources to the input. This option
affects simulation only. It does not affect generated code.

DSP/BIOS Task, DSP/BIOS Triggered Task

DSP/BIOS Task

Purpose
Library

Description

DSP/BICS

TSK
Task

Dialog Box

|

Create task that runs as separate DSP/BIOS thread
DSP/BIOS Library in Embedded Target for TI C6000 DSP

Creates a free-running task that runs in response to an ISR and as a separate
DSP/BIOS thread. The spawned task runs the downstream function call
subsystem in the model.

When the process runs this task, it uses a semaphore structure to enable the
task and restrict access by it to other resources.

E] Source Block Parameters: il
—DSP/BIOS Free-running Task Block (mask)

Creates a Task function which is spawned as a
separate DSP/BIOS Task. The Task function runs the
code of the downstream function-call subsysterm.
‘When this block is run, a semaphore is used to enable
the task execution.

—Farameters

Task name (32 characters ar less):

Task priority (1-15):
[1

Stack size (bytes):
4036

Stack memaory segment:
[SDRAM

¥ hanage own timer:

Timer resolution (seconds)
f11000

oF. I Cancel Help

5-335

DSP/BIOS Task

See Also

5-336

Task name (32 characters or less)

Creates a name for the task. Enter a string of up to 32 characters, including
numbers and letters as needed. You cannot use the standard C reserved
characters, such as/or : in the name.

Task priority (1-15)
Sets the priority for the task, where 1 is the lowest priority and 15 the
highest. Higher priority tasks can preempt tasks that have lower priority.

Stack size (bytes)
Specify the size of the stack the task uses. The default value is 4096 bytes.

Stack memory segment
Specify where the stack resides in memory.

Manage own timer
This block can manage its own time by reading time from the clock on the
board. Selecting this option directs the task/block to maintain the time
itself. When you select Manage own timer, you enable the Timer
resolution option that reports the timer resolution the task uses.

Timer resolution (seconds)
When you direct the block to manage its own time, this option (available
only when you select Manage own timer) reports the resolution of the
clock. Timer resolution is a read-only parameter. You cannot change the
value.

DSP/BIOS Hardware Interrupt, DSP/BIOS Triggered Task

DSP/BIOS Triggered Task

Purpose
Library

Description

OSF/BICS

TSk
Triggerad Taszk

Dialog Box

|

Create asynchronously triggered task
DSP/BIOS Library in Embedded Target for TI C6000 DSP

Creates a task that runs asynchronously in response to an ISR and as a
separate DSP/BIOS thread. The spawned task runs the downstream function
call subsystem in the model.

When the process runs this task, it uses a semaphore structure to enable the
task and restrict access by it to other resources.

E] Function Block Parameters: Triggered Ta il

—DSR/BIOS Triggered Task Block {mask)

Creates a Task function which 15 spawned as a separate DSF/BIOS
Task. The Task function runs the code of the downstream
function-call subsystem. YWhen this block is run. a semaphore is
used to enable the task execution.

—Farameters

Task name (32 characters ar less):

Task priority (1-15):
[z

Stack size (lvtes):
4036

Stack memaory segment:
[SDRAM

¥ Synchronize the data transfer of this task with the caller task

Ok I Cancel | Help | Apply

Task name (32 characters or less)

Creates a name for the task. Enter a string of up to 32 characters, including
numbers and letters as needed. You cannot use the standard C reserved
characters, such as/or : in the name.

5-337

DSP/BIOS Triggered Task

See Also

5-338

Task priority (1-15)
Sets the priority for the task, where 1 is the lowest priority and 15 the
highest. Higher priority tasks can preempt tasks that have lower priority,
unless the preemptible flag (Preemption flag option on the Hardware
Interrupt block) prevents preempting the task.

Stack size (bytes)
Specify the size of the stack the task uses. The default value is 4096 bytes.
Take care to set the stack size as large as necessary. If the task uses more
than the allotted space it can write into other memory areas with
unintended results.

Stack memory segment
Specify where the stack resides in memory by specifying the memory
segment. Additional information about DSP/BIOS memory segments also
appears in the Target Preferences block in the model.

Synchronize data transfer of this task with caller task
Specify whether this task should synchronize data transfer with the calling
task. Select this option to enable synchronization. Clearing this option
enables the Timer resolution option.

Timer resolution

When you direct the block not to synchronize data with the calling task (by
clearing Synchronize data transfer of this task with caller task),
Timer resolution reports the resolution of the timer. Timer resolution is
a read-only parameter. You cannot change the value.

DSP/BIOS Hardware Interrupt, DSP/BIOS Task

From Memory

Purpose

Library

Description

From
P ry

From Mermory

Get data from a specific memory location into your code running on the C6000
target

C6000 DSP Core Support in Embedded Target for TI C6000 DSP for TI DSP

Note This block will be removed in the future. Please use the Memory
Allocate and Memory Copy blocks instead.

When you generate code from your Simulink model in Real-Time Workshop
with this block in place, code generation inserts the C commands to create

a read process that gets data from memory on the target. The inserted code
reads the specified memory location in Memory address and returns the data
stored there. Any valid memory location on the target works with the block.

When you look at your generated code, you find lines of code like the following
that represent the From Memory block operation:

/* S-Function Block: <Root>/From Memory (c6000mem_src) */

{
/* Memory Mapped Input */
rtB.From_Memory = (real _T)(*((volatile int *)(4096U)));

}

In simulations this block does not perform any operations, with the exception
that the block does output port checking. From Memory blocks work only in
code generation and when your model runs on your target.

Using From Memory Blocks

Be careful when you use From Memory blocks in your models in combination
with To Memory blocks. Because the To Memory blocks give you control over
where the target stores information in memory, pay attention to how you use
the From Memory block to retrieve data from memory. You can return data
that is not what you expect.

Using the From Memory block itself does not cause problems in generated code
on your target.

When you use the options in the To Memory block to specify where the project
writes data in memory, you might be writing to memory locations that are

5-339

From Memory

reserved for the compiler or for other uses. Reading from those locations could
return the wrong answer.

To prevent your model from encountering memory errors like these, generate
your code once without loading the COFF file to the target. Look at the
generated file projectname.map, where projectname is the name of your
project, to see the memory range that the compiler uses.

From this list of allocated memory, determine the memory ranges that the
compiler uses and the locations of free memory or the memory to read with your
From Memory block. Determine the memory locations from which to read your
data from the .map file listings.

You should examine the .map file for your project each time you change the
Simulink model associated with your project.

Dialog Box

Block Parameters: From Memory x|

— From Memamy [mazk)

Output zignal zamples abtained from specified memony location of the
zelected target device.

— Parameters
Mermom address [hex):

Im
Data type: Idouble j

Sample time

|1

Ok, I Cancel | Help |

Memory address (hex)
Enter the address of the memory location that contains the data to return.
Note that you do not need to start the address with 0x to indicate that it is
hexadecimal.

Data type

Sets the type for the data coming from the block. Select one of the following
types:

5-340

From Memory

¢ double — double-precision floating-point values. This is the default
setting.

® single — single-precision floating-point values.
® uint8 — 8-bit unsigned integers. Output values range from 0 to 255.

® int16 — 16-bit signed integers. With the sign, the values range from
-32768 to 32767.

® int32 — 32-bit signed integers. Values range from 231 ¢ (231-1).

Sample time

Specifies the time between samples of the signal. The default is 1 second
between samples, for a sample rate of one sample per second
(1/Sample time).

See Also To Memory

5-341

From Ridx

Purpose
Library

Description

From R TLu
ichan1

5-342

Add RTDX communication channel to send data from MATLAB to target
RTDX Instrumentation in Embedded Target for TI C6000 DSP for TI DSP

When you generate code from your Simulink model in Real-Time Workshop
with this block in place, code generation inserts the C commands to create an
RTDX input channel on the target. The inserted code opens and enables the
channel with the name you specify in Channel name in the block parameters.
You can open, close, disable, and enable the channel from the host side
afterwards, overriding the target side status.

In the generated code, you see a command like the following

RTDX_enableInput(&channelname)

where channelname is the name you enter in Channel name.

In simulations this block does not perform any operations with the exception
that the block will generate an output matching your specified initial
conditions. From Rtdx blocks work only in code generation and when your
model runs on your target.

If you are using the Link for Code Composer Studio Development Tools, you
need to configure and cleanup RTDX properly before and after executing your
model or code. Refer to the RTDX tutorials in the Link for Code Composer
Studio documentation in the online Help system to see an example of how to do
this housekeeping task.

The initial conditions you set in the block parameters determine the output
from the block to the target for the first read attempt. Specify the initial
conditions in one of the following ways:

® Scalar value — the block generates one output sample with the value of the
scalar. For a value of 0, the block outputs a zero to the processor. When
Output dimension specifies an array, every element in the array has the
same scalar value.

e Null array ([]) — same output as a scalar with the value zero for every
sample.

Using RTDX in your model involves:

From Ridx

Dialog Box

|

¢ Adding one or more To Rtdx or From Rtdx blocks to your model to prepare

your target

¢ Downloading and running your model on your target

¢ Enabling the RTDX channels from MATLAB or using Enable RTDX
channel on start-up on the block dialog box

¢ Using the readmsg and writemsg functions in MATLAB to send and retrieve

data from the target over RTDX

To see more details about using RTDX in your model, refer to

Using Links in your Link for Code Composer
documentation in the online Help system.

Block Parameters: From RTDX

Studio Development Tools

— From RTD [mask]

Uze specified RTD channel to send data from host to target DSP. In
blocking mode, the DSP waits for new data from the block. In
nion-blocking mode, the DSP uzes previous data when new data iz not
available from the block.

— Parameters
Channel name

[~ Enable blocking mode
Initial conditions:

|n

Sample Time
1
Output dimensions

T
[V Frame-based

Data type: | double |
[~ Enable RTDX channel an start-up

(0] I Cancel | Help | Apply |

Channel name

Defines the name of the input channel to be created by the generated code.
Recall that input channels refer to transferring data from the host to the

5-343

From Ridx

target (input to the target). To use this RTDX channel, you enable and open
the channel with the name, and send data from the host to the target across
this channel. Specify any name as long as it meets C syntax requirements
for length and character content.

Enable blocking mode
Puts RTDX communications into blocking mode where the target processor
waits to continue processing until new data is available from the From
Rtdx block. Selecting blocking mode slows your processing while the
processor waits — if your new data is not available when the processor
needs it, your process stops. In non blocking mode, the processor uses old
data from the block when new data is not available. Non blocking operation
is the default and recommended for most operations.

Selecting the Blocking option disables the Initial conditions option.

Initial conditions
Specifies what data the processor reads from RTDX for the first read. This
can be 0, null ([]), or a scalar. You must have an entry for this option.
Leaving the option blank causes an error in Real-Time Workshop.

Sample time
Specifies the time between samples of the signal. The default is 1 second
between samples, for a sample rate of one sample per second
(1/Sample time).

Output dimensions
Defines a matrix for the output signal from the block, where the first value
is the number of rows and the second is the number of columns in the
output matrix. For example, the default setting [1 64] represents a 1-by-64
matrix of output values. Enter a 1-by-2 vector of doubles for the
dimensions.

Frame-based
Sets a flag at the block output that directs downstream blocks to use
frame-based processing on the data from this block. In frame-based
processing, the samples in a frame are processed simultaneously. In
sample-based processing, samples are processed one at a time.
Frame-based processing can greatly increase the speed of your application
running on your target. Note that throughput remains the same in samples
per second processed. Frame-based operation is the default.

5-344

From Ridx

Data type
Sets the type for the data coming from the block. Select one of the following
types:

® Double — double-precision floating-point values. This is the default setting.
Values range from -1 to 1.

® Single — single-precision floating-point values ranging from -1 to 1.
® Uint8 — 8-bit unsigned integers. Output values range from 0 to 255.

® Int16 — 16-bit signed integers. With the sign, the values range from -32768
to 32767.

e Int32 — 32-bit signed integers. Values range from -231 to (231-1).

Enable RTDX channel on start-up

When your application code includes RTDX channel definitions, selecting
this option enables the channels when you start the channel from
MATLAB. With this selected, you do not need to use the Link for Code
Composer Studio Development Tools enable function to prepare your
RTDX channels. Note that the option applies only to the channel you
specify in Channel name. You do have to open the channel.

See Also ccsdsp, readmsg, To Rtdx, writemsg

5-345

Hardware Interrupt

Purpose
Library

Description

CE000
IRQN

Hardware Interupt

Hardware Interrupt

Dialog Box

5-346

Generate Interrupt Service Routine
C6000 DSP Core Support in Embedded Target for TI C6000 DSP

Create interrupt service routines (ISR) in the software generated by the build
process. When you incorporate this block in your model, code generation results
in ISRs on the target that run the processes that are downstream from the this
block or a Task block connected to this block.

E] Source Block Parameters: H il
—CBO00 Interrupt Block (mask)

Create Interrupt Service Rautine which will execute the
downstream subsystern or Task Block.

—Parameters
Interrugpt numkber(s):

[5 8]

Simulink task prioriy(s):

|Bos7]

Preemption flag(s): preemptable-1. non-preemptable-0
1]

[hanage own timer

[Enable simulation input;

(8] I Cancel | Help

Interrupt Number(s)
Specify an array of interrupt numbers for the interrupts to install. The valid
range is 1 to 15.

The width of the block output signal corresponds to the number of interrupt
numbers specified here. Combined with the Simulink task priority(s) you
enter and the preemption flag you enter for each interrupt, these three values
define how the code and target process interrupts during asynchronous
scheduler operations.

Hardware Interrupt

Simulink task priority(s)

Each output of the Hardware Interrupt block drives a downstream block (for
example, a function call subsystem). Simulink task priority specifies the
Simulink priority of the downstream blocks. Specify an array of priorities
corresponding to the interrupt numbers entered in Interrupt number(s).

Simulink task priority values are required to generate the proper rate
transition code (see Rate Transitions and Asynchronous Blocks).The task
priority values are also required to ensure absolute time integrity when the
asynchronous task needs to obtain real time from its base rate or its caller.
Typically, you assign priorities for these asynchronous tasks that are higher
than the priorities assigned to periodic tasks.

Preemption flag(s)
Higher priority interrupts can preempt interrupts that have lower priority.
To allow you to control preemption, use the preemption flags to specify
whether an interrupt can be preempted.

Entering 1 indicates that the interrupt can be preempted. Entering 0
indicates the interrupt cannot be preempted. When Interrupt numbers
contains more than one interrupt priority, you can assign different
preemption flags to each interrupt by entering a vector of flag values,
corresponding to the order of the interrupts in Interrupt numbers. If
Interrupt numbers contains more than one interrupt, and you enter only
one flag value here, that status applies to all interrupts.

In the default settings [0 1], the interrupt with priority 5 in Interrupt
numbers is not preemptible and the priority 8 interrupt can be preempted.

Manage own timer

The ISR generated by the this block can manage its own time by reading time
from the clock on the board. Selecting this option directs the ISR to maintain
the time itself. When you select Manage own timer, you enable the Timer
resolution option that lets you set the timer resolution the ISR uses.

Enable simulation input

When you select this option, Simulink adds an input port to the Hardware
Interrupt block. This port is used in simulation only. Connect one or more
simulated interrupt sources to the simulation input.

5-347

Idle Task

Purpose Create free-running task
Library C6000 DSP Core Support in Embedded Target for TI C6000 DSP
Description Create a task that runs during DSP/BIOS idle loop processing. Tasks assigned
in this block run the downstream subsystems while the processor is in the idle
£01p loop.
Idle Ta=k
Idle Ta=k

Dialog Box
E] Source Block Parameters: Idle Tas
—ldle Task (mask)

3 X

Create a free-running task which will execute the downstream
subsystem.

—Farameters

Task number(s):

[1 2]

Preemption flag(s): preemptable-1. non-preemptable-0
1]

[Enahle simulation input;

aK I Cancel Help

Task number(s)

Identifies the created tasks by number. Enter as many tasks as you need
by entering a vector of integers.

Preemption flag(s)
Higher priority interrupts can preempt interrupts that have lower priority.

To allow you to control preemption, use the preemption flags to specify
whether an interrupt can be preempted.

Entering 1 indicates that the interrupt can be preempted. Entering 0
indicates the interrupt cannot be preempted. When Task number(s)
contains more than one task, you can assign different preemption flags to
each task by entering a vector of flag values, corresponding to the order of

5-348

Idle Task

the tasks in Task number(s). If Task number(s) contains more than one
task, and you enter only one flag value here, that status applies to all tasks.

In the default settings [0 1], the task with priority 5 in Task number(s)
is not preemptible and the priority 8 task can be preempted.
Enable simulation input

When you select this option, Simulink adds an input port to the Idle Task
block. This port is used in simulation only. Connect one or more simulated
interrupt sources to the simulation input.

5-349

Memory Allocate

Purpose
Library

Description

Eemory Allocate

Memory Allocate

Dialog Box

5-350

Allocate memory section on C6000 target
C6000 DSP Core Support in Embedded Target for TI C6000 DSP

On your C6000 target, this block directs the TI compiler to allocate memory for
a new variable you specify. Parameters in the block dialog box let you specify
the variable name, the alignment of the variable in memory, the data type of
the variable, and other features that fully define the memory required.

The block does not verify whether the entries for your variable are valid, such
as checking the variable name, data type, or section. You must ensure that all
variable names are valid, that they use valid data types, and that all section
names you specify are valid as well.

Notice that the block does not have input or output ports. It serves only to
allocate a memory location. You do not connect it to other blocks in your model.

The block dialog box comprises multiple tabs:

® Memory — Allocate the memory for storing variables. Specify the data type
and size.

® Section — Specify the memory section in which to allocate the variable.

Note that the dialog box images show all of the available parameters enabled.

Some of the parameters shown do not appear until you select one or more other
parameters.

Memory Allocate

|

E! Block Parameters: Memory Allocate il

Mermory Allocate (mask)
Allocates the target memary for the wariahle using specified data type and
dimension. The wariable may be aligned to the specified alignment boundary and
may be initialized with the specified walue. In addition, the variable may be placead
to & specific memaory section. The section may be optionally bound to a specific
memary address.

Mermony ISectinn |

Yariahle name:

Imy\/ariable

[v Specify variable alignment
temary alignment boundary:
4

Datatype:l uint32 j
[v Specify data type qualifier
Data tvpe qualifier

Ivolatile

Data dimension:

0 I Cancel Help Apply

Sections below describe the contents of each tab in the dialog box.

5-351

Memory Allocate

Memory Parameters

E] Block Parameters: Memory Allocate il

temony Allocate (mask)

Allocates the target mermony for the wanable using specified data type and
dimension. The wariable may be aligned to the specified alignment boundary and
may be initialized with the specified walue. In addition, the variable may be placed
to & specific memaory section. The section may be optionally bound to a specific
memory address.

hemany ISectiDn |

Yariable name:

Imy\/ariable

[v Specify variable alignment
hMemory alignment boundany:
[4
Datatype:l uint32 j
[v Specify data type qualifier

Data type qualifier

Ivolatile

Data dimension:

(54

Initial walue:
[

0K I Cancel Help Apphy

You find the following memory parameters on this tab.

Variable name
Specify the name of the variable to allocate. The variable will be allocated
in the generated code.

Specify variable alignment

Select this option to direct the compiler to align the variable in Variable
name to an alignment boundary. When you select this option, the Memory

5-352

Memory Allocate

alignment boundary parameter appears so you can specify the alignment.
Use this parameter and Memory alignment boundary when your process
requires this feature.

Memory alignment boundary
After you select Specify variable alignment, this option enables you to
specify the alignment boundary in bytes. If your variable contains more
than one value, such as a vector or an array, the elements are aligned
according to rules applied by the compiler.

Data type
Defines the data type for the variable. Select from the list of types
available.

Specify data type qualifier
Selecting this enables Data type qualifier so you can specify the qualifier
to apply to your variable.

Data type qualifier
After you select Specify data type qualifier, you enter the desired
qualifier here. Volatile is the default qualifier. Enter the qualifier you
need as text. Common qualifiers are static and register. The block does
not check for valid qualifiers.

Data dimension
Specifies the number of elements of the type you specify in Data type.
Enter an integer here for the number of elements.

Initialize memory
Directs the block to initialize the memory location to a fixed value before
processing.

Initial value

Specifies the initialization value for the variable. At run time, the block
sets the memory location to this value.

5-353

Memory Allocate

Section Parameters

E] Block Parameters: Memory Allocate

X|
temony Allocate (mask)

Allocates the target mermony for the wanable using specified data type and
dimension. The wariable may be aligned to the specified alignment boundary and
may be initialized with the specified walue. In addition, the variable may be placed

to & specific memaory section. The section may be optionally bound to a specific
memory address.

Mermory | Section |

v Specify memony section
hMemory section:
[mySECT

v iBiingl memory section:

Section stan address:
[hexzdecrs000)

oK I Cancel Help

Apply

Parameters on this tab relate to specifying the section in memory to store the
variable.

Specify memory section

Selecting this parameter enables you to specify the memory section to
allocate space for the variable. Enter either one of the standard memory
sections or a custom section that you declare elsewhere in your code.

5-354

Memory Allocate

See Also

Memory section

Identify a specific memory section to allocate the variable in Variable
name. You must be sure the section has sufficient space to store your
variable.

Bind memory section

After you specify a memory section by selecting Specify memory section
and entering the section name in Memory section, use this parameter to
bind the memory section to the location in memory specified in Section
start address. When you select this, you enable the Section start address
parameter.

Note that the new memory section (specified in Memory section) is defined
when you check this parameter. Do not use Bind memory section for
existing memory sections.

Section start address

Specify the address to which to bind the memory section. Enter the address
in decimal form or in hexadecimal with a conversion to decimal as shown
by the default value hex2dec ('8000'). The block does not verify the
address — you must be sure the address exists and can contain the memory
section you entered in Memory section.

Memory Copy

5-355

Memory Copy

Purpose
Library

Description

Memory Copy

5-356

Copy to and from memory section
C6000 DSP Core Support in Embedded Target for TI C6000 DSP

In generated code, this block copies variables or data from and to target
memory as configured by the block parameters. Your model can contain as
many of these blocks as you require to manipulate memory on your target.

Each block works with one variable, address, or set of addresses provided to the
block. Parameters for the block let you specify both the source and destination
for the memory copy, as well as options for initializing the memory locations.

Using parameters provided by the block, you can change options like the
memory stride and offset at run time. In addition, by selecting various
parameters in the block, you can write to memory at program initialization, at
program termination, and at every sample time. The initialization process
occurs once, not for every read and write operation.

With the custom source code options, the block enables you to add custom

C source code before and after each memory read and write (copy) operation.
One use for the custom code capability would be to lock and unlock registers
before and after accessing them. For example, some processors have registers
that you may need to to unlock and lock with EALLOW and EDIS macros
before and after your program accesses them.

If your processor or target supports quick direct memory access (QDMA) the
block provides a parameter to check that implements the QDMA copy
operation, and provides you the ability to specify a function call that can
indicate that the QDMA copy is finished. Only the C621x, C64xx, and C671x
processor families support QDMA copy.

Block Operations

This block performs operations at three periods during program execution —
initialization, real-time operations, and termination. With the options for
setting memory initialization and termination, you control when and how the
block initializes memory, copies to and from memory, and terminates memory
operations. The parameters enable you to turn on and off memory operations
in all three periods independently.

Memory Copy

Dialog Box

Used in combination with the Memory Allocate block, this block supports
building custom device drivers, such as PCI bus drivers or codec-style drivers,
by letting you manipulate and allocate memory. Note that this block does not
require the Memory Allocate block to be in the model.

In a simulation, this block does not perform any operation. The block output is
not defined.

Copying Memory

When you employ this block to copy an individual data element from the source
to the destination, the block copies the element from the source in the source
data type, and then casts the data element to the destination data type as
provided in the block parameters.

The block dialog box contains multiple tabs:

¢ Source — Identifies the sequential memory location to copy from. Specify
the data type, size, and other attributes of the source variable.

® Destination — Specify the memory location to copy the source to. Here you
also specify the attributes of the destination.

® Options — Select various parameters to control the copy process.
Note that the dialog box images show many of the available parameters
enabled. Some parameters shown do not appear until you select one or more

other parameters. Some parameters are not shown in the figures, but the text
describes them and how to make them available.

5-357

Memory Copy

E] Function Block Parameters: Memory Copy 3 il

—Memory Copy (mask)

\Write fread toffrom sequential locations of the target memory stading at specified
start address and offset using specified data length and stride. The start address
and offset can be changed during run-time. Memaory may be written,/read during
initialization, termination and at every sample time. You can specify custom C
source code to be inserted befare and/or after the memony write/read
instruction(s). Quick DA (QDMA) data copy can be used on supponed DSP
plafforms.

Source! | Destination | Options |

Copyfrom:l Specified address j
Specify address source:l Specifywvia dialog j
Address:

|hex2dec('DDDDEDDDD')

Datatype:l Inherit from input port j
Data length:

f1

[v Use offsetwhen reading

Specify Dﬂsetsource:l Specify via dialog j
Offset:

f1

Stride:

f1

0K I Cancel Help Apply

Sections that follow describe the parameters on each tab in the dialog box.

5-358

Memory Copy

Source Parameters

E] Function Block Parameters: Memory Copy il

—Memory Copy (mask)

\Write fread toffrom sequential locations of the target memory stading at specified
start address and offset using specified data length and stride. The start address
and offset can be changed during run-time. Memaory may be written,/read during
initialization, termination and at every sample time. You can specify custom C
source code to be inserted befare and/or after the memony write/read
instruction(s). Quick DA (QDMA) data copy can be used on supponed DSP
plafforms.

IDestinatiDn | Options |

Copyfrom:l Specified address j
Specify address source:l Specifywvia dialog j
Address:

|hex2dec('DDDDEDDDD')

Datatype:l Inherit from input port j
Data length:

f1

[v Use offsetwhen reading

Specify Dﬂsetsource:l Specify via dialog j
Offset:

f1

Stride:

Copy from

Select the source of the data to copy. Choose one of the entries on the list:

= Input port — this reads the data from the block input port.
= Specified address — this reads the data at the specified location in

Specify address source and Address.

= Specified source code symbol — tells the block to read the symbol
(variable) you enter in Source code symbol. When you select this copy
from option, you enable the Source code symbol parameter.

|

5-359

Memory Copy

5-360

Note Ifyou do not select the Input port option for Copy from, you must
change the Data type parameter setting from the default Inherit from
input port to one of the data types on the Data type list. If you do not make
the change, you receive an error message that the data type cannot be
inherited because the input port does not exist.

Depending on the choice you make for Copy from, you see other
parameters that let you configure the source of the data to copy.

Specify address source

This parameter directs the block to get the address for the variable either
from an entry in Address or from the input port to the block. Select either
Specify via dialog or Input port from the list. Selecting Specify via
dialog activates the Address parameter for you to enter the address for
the variable.

When you select Input port, the port label on the block changes to &src,
indicating that the block expects the address to come from the input port.
Being able to change the address dynamically lets you use the block to copy
different variables by providing the variable address from an upstream
block in your model.

Source code symbol

Specify the symbol (variable) in the source code symbol table to copy. The
symbol table for your program must include this symbol. The block does not
verify that the symbol exists and uses valid syntax. Enter a string to
specify the symbol exactly as you use it in your code.

Address

When you select Specify via dialog for the address source, you enter the
variable address here. Addresses should be in decimal form. Enter either
the decimal address or the address as a hexadecimal string with single
quotations marks and use hex2dec to convert the address to the proper
format. Here is one example that converts 0x1000 to decimal form.

4096 = hex2dec('1000"');

Memory Copy

For this example, you could enter either 4096 or hex2dec('1000') as the
address.

Data type

Use this parameter to specify the type of data that your source uses. The

list includes the supported data types, such as int8, uint32, and Boolean,
and the option Inherit from input port for inheriting the data type for
the variable from the block input port.

Data length

Specifies the number of elements to copy from the source location. Each
element has the data type specified in Data type.

Use offset when reading

When you are reading the input, use this parameter to specify an offset for
the input read. The offset value is in elements with the assigned data type.
The Specify offset source parameter becomes available when you check
this option.

Specify offset source

The block provides two sources for the offset — Input port and Specify
via dialog. Selecting Input port configures the block input to read the
offset value by adding an input port labeled src ofs. This port enables your
program to change the offset dynamically during execution by providing
the offset value as an input to the block. If you select Specify via dialog,
you enable the Offset parameter in this dialog box so you can enter the
offset to use when reading the input data.

Offset

Offset tells the block whether to copy the first element of the data at the

input address or value, or skip one or more values before starting to copy
the input to the destination. Offset defines how many values to skip before
copying the first value to the destination. Offset equal to one is the default
value and Offset accepts only positive integers of one or greater.

Stride

Stride lets you specify the spacing for reading the input. By default, the
stride value is one, meaning the generated code reads the input data
sequentially. When you add a stride value that is not equal to one, the block
reads the input data elements not sequentially, but by skipping spaces in

5-361

Memory Copy

the source address equal to the stride. Stride must be a scalar with positive
integer value of one or greater.

The next two figures help explain the stride concept. In the first figure you
see data copied without any stride. Following that figure, the second figure
shows a stride value of two applied to reading the input when the block is
copying the input to an output location. You can specify a stride value for
the output with parameter Stride on the Destination pane. Compare
stride with offset to see the differences.

Source Destination
Address Address

A 4

v

v

v

v

N |INVN]JOolRRlO|JW]| -
A\ 4
NI NVN]JoOolh~AlO|JlW]|~

v

-
o
v

-
o

A 4

|
A 4
|

Input Stride =1
Output Stride =1
Number of Elements Copied = 10

5-362

Memory Copy

|

Source | |Destination
Address Address

>
Ld

/]

(e[~ [e]e]~]

[o]e]a[~]~]e]s]ofw]-]

Input Stride =2
Output Stride =1
Number of Elements Copied = 5

5-363

Memory Copy

Destination Parameters

E] Function Block Parameters: Memory Copy il

—Memory Copy (mask)

\Write fread toffrom sequential locations of the target memory stading at specified
start address and offset using specified data length and stride. The start address
and offset can be changed during run-time. Memaory may be written,/read during
initialization, termination and at every sample time. You can specify custom C
source code to be inserted befare and/or after the memony write/read
instruction(s). Quick DA (QDMA) data copy can be used on supponed DSP

plafforms.

Source | Destination IOptiDns |

Copyto:l Output port

Lef Lef

Datatype:l uint32

v ilse offsatwhen writing

Specify Dﬂsetsource:l Specify via dialog j
Offset:

f1

Stride:

f1

sample time:

finf

Ok I Cancel Help Apply

Copy to
Select the destination for the data. Choose one of the entries on the list:

= Output port — Copies the data to the block output port. From the output
port the block passes data to downstream blocks in the code.

= Specified address — Copies the data to the specified location in Specify
address source and Address.

= Specified source code symbol — tells the block to copy the variable or

symbol (variable) to the symbol you enter in Source code symbol. When
you select this copy to option, you enable the Source code symbol

parameter.

5-364

Memory Copy

Note Ifyou do not select the Output port option for Copy to, you must
change the Data type parameter setting from the default Inherit from
source to one of the data types on the Data type list. If you do not make the
change, you receive an error message that the data type cannot be inherited
because the input port does not exist.

Depending on the choice you make for Copy from, you see other
parameters that let you configure the source of the data to copy.

Specify address source

This parameter directs the block to get the address for the variable either
from an entry in Address or from the input port to the block. Select either
Specify via dialog or Input port from the list. Selecting Specify via
dialog activates the Address parameter for you to enter the address for
the variable.

When you select Input port, the port label on the block changes to &dst,
indicating that the block expects the destination address to come from the
input port. Being able to change the address dynamically lets you use the
block to copy different variables by providing the variable address from an
upstream block in your model.

Source code symbol

Specify the symbol (variable) in the source code symbol table to copy. The
symbol table for your program must include this symbol. The block does not
verify that the symbol exists and uses valid syntax.

Address

When you select Specify via dialog for the address source, you enter the
variable address here. Addresses should be in decimal form. Enter either
the decimal address or the address as a hexadecimal string with single
quotations marks and use hex2dec to convert the address to the proper
format.Here is one example that converts 0x2000 to decimal form.

8192 = hex2dec('2000');

For this example, you could enter either 8192 or hex2dec ('2000') as the
address.

5-365

Memory Copy

5-366

Data type

Use this parameter to specify the type of data that your variable uses. The
list includes the supported data types, such as int8, uint32, and Boolean,
and the option Inherit from input port for inheriting the data type for
the variable from the block input port.

Specify offset source

The block provides two sources for the offset — Input port and Specify
via dialog. Selecting Input port configures the block input to read the
offset value by adding an input port labeled src ofs. This port enables your
program to change the offset dynamically during execution by providing
the offset value as an input to the block. If you select Specify via dialog,
you enable the Offset parameter in this dialog box so you can enter the
offset to use when writing the output data.

Offset

Offset tells the block whether to write the first element of the data to be
copied to the first destination address location, or skip one or more
locations at the destination before writing the output. Offset defines how
many values to skip in the destination before writing the first value to the
destination. One is the default offset value and Offset accepts only positive
integers of one or greater.

Stride

Stride lets you specify the spacing for copying the input to the destination.
By default, the stride value is one, meaning the generated code writes the
input data sequentially to the destination in consecutive locations. When
you add a stride value not equal to one, the output data is stored not
sequentially, but by skipping addresses equal to the stride. Stride must be
a scalar with positive integer value of one or greater.

This figure shows a stride value of three applied to writing the input to an
output location. You can specify a stride value for the input with parameter
Stride on the Source pane. As shown in the figure, you can use both an
input stride and output stride at the same time to enable you to manipulate
your memory more fully.

Memory Copy

|

Source Destination
Address Address

NI N[Ol lO|W]| -

/T/SO//"

Input Stride =2
Output Stride =3
Number of Elements Copied =5

Sample time

Sample time sets the rate at which the memory copy operation occurs, in
seconds. The default value Inf tells the block to inherit the sample time
from the input if there is one or the Simulink model (when there are no
input ports on the block). Enter the sample time in seconds as you need.

5-367

Memory Copy

5-368

Options Parameters

E] Function Block Parameters: Memory Copy

—Memory Copy (mask)

plafforms.

\Write fread toffrom sequential locations of the target memory stading at specified
start address and offset using specified data length and stride. The start address
and offset can be changed during run-time. Memaory may be written,/read during
initialization, termination and at every sample time. You can specify custom C
source code to be inserted befare and/or after the memony write/read
instruction(s). Quick DA (QDMA) data copy can be used on supponed DSP

Source |Destinatic|n | Options |

lv Setmemory value atinitizlization

Specify initializetion value Source:l Specify constant walue

Initialization value (constant]:

f1

[v Apply initialization walue as mask

Bitwize Dperatu:nrl hitwise AND

[v Setmermarny value gttermination

Termination walue:

f1
[v Setmemary walue only atinitialization/termination
[v Insert custom code befora memaory write

Custom code:

I,-’* Custom Code Before White®/

[v Inser custom code after memary wite

Custom code:

I,"* Custom Code After Write®!

[v Use QDMA for copy (if available)
[iEnable blocking made:

oK I Cahcel

Help

Apply

Memory Copy

Set memory value at initialization

When you check this option, you direct the block to initialize the memory
location to a specific value when you initialize your program at run time.

After you check this option, use the Set memory value at termination and

Specify initialization value source parameters to set your desired value,
or tell the block to get the initial value from the input

Specify initialization value source

After you check Set memory value at initialization, use this parameter to
select the source of the initial value. Choose either

= Specify constant value — Sets a single value to use when your program
initializes memory. Enter any value that meets your needs.

= Specify source code symbol — Specifies a variable (a symbol) to use for
the initial value. Enter the symbol as a string.

Initialization value (constant)
If you check Set memory value at initialization and choose Specify
constant value for Specify initialization value source, enter the
constant value to use here. Any real value that meets your needs is
acceptable.

Initialization value (source code symbol)
If you check Set memory value at initialization and choose Specify
source code symbol for Specify initialization value source, enter the
symbol to use here. Any symbol that meets your needs and is in the symbol
table for the program is acceptable. When you enter the symbol, the block
does not verify whether the symbol is a valid one. If it is not valid you get
an error when you try to compile, link, and run your generated code.

Apply initialization value as mask

You can use the initialization value as a mask to manipulate register
contents at the bit level. Your initialization value is treated as a string of
bits for the mask.

Checking this parameter enables the Bitwise operator parameter for you
to define how to apply the mask value.

To use your initialization value as a mask, the output from the copy has to
be a specific address. It cannot be an output port, but it can be a symbol as
well.

5-369

Memory Copy

Bitwise operator

To use the initialization value as a mask, select one of the following from
the Bitwise operator list to describe how to apply the value as a mask to

the memory value.

Bitwise Operator List Entry

Description

bitwise AND

bitwise OR

bitwise exclusive OR

left shift

right shift

Apply the mask value as a bitwise AND to
the value in the register.

Apply the mask value as a bitwise OR to the
value in the register.

Apply the mask value as a bitwise exclusive
OR to the value in the register.

Shift the bits in the register left by the
number of bits represented by the
initialization value. For example, if your
initialization value is 3, the block shifts the
register value to the left 3 bits. In this case,
the value must be a positive integer.

Shift the bits in the register to the right by
the number of bits represented by the
initialization value. For example, if your
initialization value is 6, the block shifts the
register value to the right 6 bits. In this
case, the value must be a positive integer.

Applying a mask to the copy process lets you select individual bits in the
result, for example, to read the value of the fifth bit by applying the mask.

Set memory value at termination

Along with initializing memory when the program starts to access this
memory location, this parameter directs the program to set memory to
a specific value when the program terminates.

5-370

Memory Copy

Set memory value only at initialization/termination
This block performs operations at three periods during program execution
— initialization, real-time operations, and termination. When you check
this option, the block only does the memory initialization and termination
processes. It does not perform any copies during real-time operations.

Insert custom code before memory write
Select this parameter to add custom C code before the program writes to
the specified memory location. When you check this, you enable the
Custom code parameter where you enter your C code.

Custom code
Enter the custom C code to insert into the generated code just before the
memory write operation. Code you enter here appears in the generated
code exactly as you enter it.

Insert custom code after memory write
Select this parameter to add custom C code immediately after the program
writes to the specified memory location. When you check this, you enable
the Custom code parameter where you enter your C code.

Custom code
Enter the custom C code to insert into the generated code just after the
memory write operation. Code you enter here appears in the generated
code exactly as you enter it.

Use QDMA for copy (if available)
For processors that support quick direct memory access (QDMA), check
this parameter to enable the QDMA operation and to access the blocking
mode parameter.

If you check this parameter, your source and destination data types must
be the same or the copy operation returns an error. Also, the input and
output stride values must be one.

Enable blocking mode
If you check the Use QDMA for copy parameter, check this option to direct
the memory copy operations to be blocking processes. With blocking
enabled, other processing in the program waits while the memory copy
operation finishes.

5-371

Memory Copy

See Also Memory Allocate

5-372

TMDX326040 ADC

Purpose
Library

Description

Line In
TMOK3I2G040 |
ALC

THMOX326040 ALDC

Configure codec on daughter card for output to C6711 DSK
TMDX326040 Support in Embedded Target for TI C6000 DSP for TI DSP

With the TMDX326040A daughte